Suchergebnis für: ** Zeige Treffer 41 - 50 von 1414

Video

Havonix Schulmedien-Verlag

Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Exponentialfunktionen, Beispiel 2 | A.41.06

Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 5e: Wendepunkte (Hochpunkt, Tiefpunkt) berechnen | A.19.05

Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: p-q-Formel, Mitternachtsformel, Beispiel 2 | A.12.05

Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit “x²”, einen mit “x” und eine Zahl ohne “x”. Auf einer Seite der Gleichung muss “=0” stehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: p-q-Formel, Mitternachtsformel, Beispiel 4 | A.12.05

Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit “x²”, einen mit “x” und eine Zahl ohne “x”. Auf einer Seite der Gleichung muss “=0” stehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05

Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit “x²”, einen mit “x” und eine Zahl ohne “x”. Auf einer Seite der Gleichung muss “=0” stehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 3 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 8 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mitternachtsformel, a-b-c-Formel, Beispiel 2 | A.12.04

Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit “x²”, einen mit “x” und eine Zahl ohne “x”. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer “=0” stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ oder Null ist, erhält man zwei, keine oder eine Lösung.


Dieses Material ist Teil einer Sammlung