Suchergebnis für: ** Zeige Treffer 1 - 10 von 69

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Logistisches Wachstum berechnen, Beispiel 1 | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logistisches Wachstum berechnen, Beispiel 2 | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.08

Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum aktuellen Bestand und zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.08

Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum aktuellen Bestand und zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Logistisches Wachstum berechnen | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Logistisches Wachstum mit Differentialgleichung berechnen | A.30.08

Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum aktuellen Bestand und zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.30.02

Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Differentialgleichung: Was ist eine DGL und wie rechnet man damit? Beispiel 3 | A.30.02

Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.


Dieses Material ist Teil einer Sammlung