Suchergebnis für: ** Zeige Treffer 1 - 10 von 1698

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen mit Brüchen | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen mit Brüchen, Beispiel 2 | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ungleichungen mit Brüchen, Beispiel 1 | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Gleichung dritten Grades; Nullstellen kubische Parabel berechnen, Beispiel 2 - A.05.01

Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man "x" (oder evtl. "x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wachstum berechnen | A.07

Es gibt in der Mathematik unendlich viele Wachstumssorten. Vier davon sind so wichtig, dass sie einen Namen erhalten haben: 1. Das lineare Wachstum, 2. Das exponentielle Wachstum, 3. Das begrenzte Wachstum (heißt auch beschränktes Wachstum) und 4. Das logistische Wachstum. Es gibt zwei Möglichkeiten, Wachstumsprozesse zu berechnen. Die einfachste (wenn auch umständlichste) Methode verwendet man in der Schule, so ca. 9., 10. Klasse. Die anderen Methoden (die man in der Oberstufe oder im Studium rechnet), sind in Kapitel A.30 zu finden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen | A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*b^x beschrieben (Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t”, q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen, Beispiel 2 | A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t”, q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beschränktes Wachstum berechnen, Beispiel 3 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 1 - A.04.07

Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).


Dieses Material ist Teil einer Sammlung