Suchergebnis für: ** Zeige Treffer 31 - 40 von 492

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 5 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02

Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp

Geometrie - Aufgaben online bearbeiten

Zu den Bereichen Dreiecke, parallel-senkrecht, Würfelnetze, Formen sowie räumliches Zählen gibt es hier verschiedene Aufgaben für Schülerinnen und Schüler, die online bearbeitet werden können. Eine Rückmeldung geschieht nach jeder gelösten Aufgabe.

Medientypen

Anderer Ressourcentyp

Lernalter

6-9

Schlüsselwörter

Aufgabe Geometrie

Sprachen

Deutsch

Anderer Ressourcentyp

Körper und Flächen - Aufgaben online bearbeiten

Rund um das Thema Körper und Flächen drehen sich die Aufgaben, die Schülerinnen und Schüler hier online bearbeiten können. Eine Rückmeldung erscheint nach jeder gelösten Aufgabe.

Medientypen

Anderer Ressourcentyp

Lernalter

6-9

Schlüsselwörter

Aufgabe Geometrie

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rotationsvolumen einer Funktion über Umkehrfunktion berechnen; Rotation um y-Achse, Beispiel 1

Benötigt man das Rotationsvolumen einer Funktion um die y-Achse, so lässt man die Umkehrfunktion um die x-Achse rotieren. Im Detail: Man benötigt das Volumen, das durch die Rotation um die y-Achse von einer Fläche entsteht. Zuerst bestimmt man die Umkehrfunktion von f(x) und lässt diese Umkehrfunktion nun “ganz normal” um die x-Achse rotieren. Die Grenzen sind hierbei die y-Werte!! Das erhaltene Volumen ist das gesuchte.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 4b | A.29.05

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr “erstes Mal”. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine Funktionsanpassung, Hauptproblematik ist die Berechnung des Volumens in mehreren Varianten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 4e | A.29.05

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr “erstes Mal”. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine Funktionsanpassung, Hauptproblematik ist die Berechnung des Volumens in mehreren Varianten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 2 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Volumen dreiseitige Pyramide berechnen über Kreuzprodukt | V.07.04

Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt “Spatprodukt”. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein Kreuzprodukt bilden, mit dem Ergebnis davon und dem dritten Vektor das Skalarprodukt bilden. Das Ergebnis durch 6 teilen. Fertig. Geht schnell.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 3 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung