Suchergebnis für: ** Zeige Treffer 1 - 10 von 11

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Text, Video

Logo creative commons

Technische Universität Dortmund

Figurierte Zahlen

Figurierte Zahlen sind Klassen von Zahlen, die sich als geometrische Figuren gleicher Art darstellen bzw. legen lassen. Dies bedeutet, dass sich mit einer bestimmten Anzahl von Plättchen eine bestimmte geometrische Figur legen lässt, aber eben auch, dass sich aus vorherigen solcher Figuren neue Figuren dieser Bauart legen lassen. Dieses aufeinanderfolgende Bauen von figurierten Zahlen gleicher Bauart führt zur Frage nach einer verallgemeinerten expliziten Formel, die die Anzahl aller Plättchen irgendeiner figurierten Zahl dieser Art bestimmen lässt: Wie viele Plättchen hat die 1000. dieser Zahlen? Auf den folgenden Seiten werden genau solche expliziten Formeln für die Quadratzahlen, Rechteckszahlen, Dreieckszahlen und Fünfeckszahlen anschaulich bewiesen.

Text, Video

Logo creative commons

Technische Universität Dortmund

Teilbarkeit

In diesem Kapitel werden die natürlichen Zahlen unter der Perspektive der elementaren Teilbarkeitslehre untersucht. Dazu werden verschiedene Teilbarkeitsrelationen insbesondere anschaulich (linear oder mit Hilfe von Rechteckfeldern) bewiesen. Diese Beweisarten fußen auf inhaltlicher Vorstellung. Auch werden formale Beweise mit Variablen mit den anschaulichen Beweisen verknüpft und generische Beweise sprachlich verallgemeinert. Darüber hinaus werden aber auch Verfahren wie z. B. der euklidische Algorithmus veranschaulicht. Die Videos zur Exploration sollen dabei helfen, solche Beweise und Veranschaulichungen selbstständig durchführen zu können.

Text, Video

Logo creative commons

Technische Universität Dortmund

Stellenwerte

In diesem Kapitel geht es schwerpunktmäßig um das Rechnen in b-Systemen. Dabei werden nicht nur Möglichkeiten der Umwandlungen vom Dezimalsystem in ein b-System thematisiert, sondern auch das Rechnen in b-Systemen am Beispiel der schriftlichen Subtraktion als auch den Teilbarkeitsregeln in b-Systemen. Dazu werden die Algorithmen und Teilbarkeitsregeln zunächst im Dezimalsystem erläutert und anschließend auf ein b-System übertragen.

Text, Video

Logo creative commons

Technische Universität Dortmund

Rechengesetze

In diesem Kapitel werden die Konstanzgesetze anhand generischer Beispiele erklärt, d.h. anhand konkreter Zahlenbeispiele wird erläutert, warum diese Art der Argumentation für alle Fälle generalisierbar ist.

Text, Video

Logo creative commons

Technische Universität Dortmund

Kombinatorik

In diesem Kapitel werden zentrale Rechenverfahren der Kombinatorik veranschaulicht. Der Fokus liegt auf der Summenregel, der Produktregel, dem Binomialkoeffizienten und der Kombination mit Wiederholung.

Text

Prof. Dr. Jürgen Roth

Die Zahl i - phantastisch, praktisch, anschaulich

Wie kann ein geometrisch ausgerichteter Zugang zu den komplexen Zahlen aussehen? Historisch gesehen haben sich die komplexen Zahlen erst wirklich durchgesetzt, als mit der Gaußschen Zahlenebene eine geometrische Interpretation vorlag. Für eine anschauliche Einführung in die komplexen Zahlen für Schülerinnen und Schüler einer 10. Klasse bietet sich ein geometrisch ausgerichteter Zugang an. Ausgangspunkt ist die Fragestellung ob es einen über die reellen Zahlen hinausgehenden Zahlbereich gibt, in dem z. B. die Gleichung x2 = − 1 gelöst werden kann, der den Zahlbereich der reellen Zahlen enthält und in dem die bekannten Rechenregeln weiterhin gültig sind (Permanenzprinzip). Mathematisch gesehen geht es um die Frage, ob die Körperaxiome erfüllt sind und der Körper der reellen Zahlen ein Teilkörper dieses neuen Körpers ist. Die hier verfolgte Idee besteht darin, den anschaulichen, zum Körper der reellen Zahlen isomorphen Körper der reellen Zeiger zu betrachten und ihn auf der anschaulichen Ebene geeignet zu erweitern.

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 2 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 1 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung