Suchergebnis für: ** Zeige Treffer 1 - 10 von 170

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer ganzrationalen Funktion erstellen, Beispiel 2 | A.46.06

Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als Notlösung in Frage. Sie werden hauptsächlich Fall 2) begegnen. Auch wir werden uns in diesem Unterkapitel dem Fall 2) widmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 6 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 2 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: Glockenkurve | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit drei Punkten - A.04.17

Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt "c"). Die erhaltenen Gleichungen muss man nun irgendwie so miteinander verrechnen, dass man "a", "b" und "c" erhält. (Zur Frage WIE das geht, siehe evtl. Kap G.02 und Unterkapitel).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 1 - A.04.18

Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die x-Werte der Nullstellen in die Linearfaktorform einzusetzen [y=a(x-x1)(x-x2), wobei x1 und x2 die Nullstellen sind]. Weiß man, dass es sich um eine Normalparabel handelt, kennt man auch schon "a" (a=1 oder a=-1). Ist es keine Normalparabel, so muss noch ein weiterer Punkt gegeben sein. Dessen Koordinaten setzt man zusätzlich in die Linearfaktorform ein und berechnet nun "a". Wie dem auch sei, nun setzt man "a", "x1" und "x2" in die Linearfaktorform ein und ist fertig. Evtl. kann man die Klammern ausmultiplizieren um die Normalform der Parabel zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 3 - A.04.18

Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch "Steckbriefaufgabe"), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die x-Werte der Nullstellen in die Linearfaktorform einzusetzen [y=a(x-x1)(x-x2), wobei x1 und x2 die Nullstellen sind]. Weiß man, dass es sich um eine Normalparabel handelt, kennt man auch schon "a" (a=1 oder a=-1). Ist es keine Normalparabel, so muss noch ein weiterer Punkt gegeben sein. Dessen Koordinaten setzt man zusätzlich in die Linearfaktorform ein und berechnet nun "a". Wie dem auch sei, nun setzt man "a", "x1" und "x2" in die Linearfaktorform ein und ist fertig. Evtl. kann man die Klammern ausmultiplizieren um die Normalform der Parabel zu erhalten.


Dieses Material ist Teil einer Sammlung