Website

Humboldt-Universität zu Berlin

Känguru der Mathematik - Wettbewerb

Känguru der Mathematik - das ist ein mathematischer Multiple-Choice-Wettbewerb für über 6 Millionen Teilnehmer in fast 60 Ländern. Er findet einmal jährlich am 3. Donnerstag im März in allen Teilnehmerländern gleichzeitig stattfindet und wird als freiwilliger Klausurwettbewerb an den Schulen unter Aufsicht geschrieben.

Arbeitsblatt, Text

Chancen erarbeiten Verbundprojekt im Bundesverband Alphabetisierung und Grundbildung e.V.

Themenheft Mathematik: Einfache Grundlagen

Um Jugendlichen die Notwendigkeit von grundlegenden mathematischen Kenntnissen näher zu bringen, enthält das Themenheft vielfältige berufs- und alltagsnahe Sachaufgaben, unter anderem aus Haushalt und Familie, zur Tagesstruktur, zum Praktikum und Ausbildungsbetrieb oder der Arbeitsstelle und aus der Freizeit. Anders als in den bisherigen leicht lesbaren Themenheften ist das Themenheft “Mathematik” so konzipiert, dass die Kapitel nach didaktischen Prinzipien der Mathematik aufeinanderfolgend bearbeitet werden sollten.

Arbeitsblatt, Text, Unterrichtsplanung, Video

Logo creative commons

Projekt PRIMAS, Pädagogische Hochschule Freiburg

Ein wunderschöner mathematischer Morgen...

"Was für ein wunderschöner Morgen - und wie viel Mathematik da schon wieder drinsteckt!" Diese Begrüßung einer Klasse kann der Beginn einer mathematischen Aufgabe zum forschenden Lernen sein. Die Schüler sollen zunächst eigene Fragen sammeln, die Ihnen zu ihrem typischen Morgen einfallen: "Wie viel Zahnbürsten verbrauche ich in meinem Leben?", "Wie viel Liter und was trinke ich / die Klasse / die Schule jeden Morgen zum Frühstück?". Die verschiedenen Fragen werden gesammelt und anschließend jeweils eine Frage in Partnerarbeit bearbeitet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Wissenswertes zu Funktionen | A.52

“Diverses” ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine “leichte” Regel für schwere Berechnungen von Grenzwerten. Das dritte Unterkapitel beinhaltet verschachtelte (=verkettete) Funktionen und im letzten Unterkapitel widmen wir uns den tollen Begriffen “injektiv, surjektiv und bijektiv.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 5 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen | A.52.01

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung