Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Vierecks berechnen, Beispiel 2 - A.03.05

Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu umschreiben und dann ein paar rechtwinklige Dreiecke (evtl. auch ein Rechteck) abzuziehen. Details: siehe Beispielfilme.

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 3 | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.

Video

Mathe Seite

Mathe-Seite: Analytische Geometrie (Vektoren)

Vektorgeometrie (auch “analytische Geometrie” genannt) befasst sich mit linearen Berechnungen in Räumen (meist im dreidimensionalen Raum). Die Objekte, mit denen man rechnet sind Punkte, Geraden, Ebenen, Kugeln. Diese untersucht man auf gemeinsame Punkte (Schnittpunkte) und berechnet Abstände. Das macht eigentlich schon 80% der Vektorgeometrie in der Schule aus. Eine Einführung

Medientypen

Video

Lernalter

16-18

Schlüsselwörter

Geometrie

Sprachen

Deutsch

Urheberrecht

Keine Angabe

Dieses Material ist Teil einer Sammlung