Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parallelität von Geraden, Beispiel 4 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parallelität von Geraden, Beispiel 2 | A.02.06

Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch “negativ reziprok”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d, Beispiel 2 | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen | A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkt von Geraden berechnen | A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach “x” auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkt von Geraden berechnen, Beispiel 2 - A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach "x" auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung