Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Bild, Text

xplora

Explora-Datenbankprojekte - Portal für den mathematisch/naturwissenschaftlichen Unterricht

Datenbankprojekte können aus dem wissenschaftlichen Unterricht ein ganz neues Erlebnis für Schüler machen. Sie sind gewöhnlich eine Mischung aus Ausflügen im Freien und Datenbankaktivitäten in der Schule, um den Schülern so gleichzeitig Erfahrungen in der Natur sowie im IKT-Bereich zu erlauben. Die in der Natur gemachten Beobachtungen werden in eine Datenbank gespeichert und so anderen mittels Internet zur Verfügung gestellt.

Bild, Text

xplora

Explora-WebLab - Portal für den mathematisch/naturwissenschaftlichen Unterricht

Im Bereich WebLab werden Webexperimente angeboten. Webexperimente - praktische wissenschaftliche Vorgänge, die mit Hilfe einer Website aus der Entfernung überwacht werden - sind großartige Hilfsmittel für den wissenschaftlichen Unterricht. Das Versuchsmaterial kann sich in einer Universität, einem wissenschaftlichen Museum oder jedem anderen Ort befinden. Durch die Anwendung der Webexperimente können Schüler an Versuchen teilnehmen, die in der Schule nicht erlaubt sind und Datenbankentechniken zur Analyse und zur Aufbewahrung der Resultate eines Versuchs anwenden. Die Lehrer und Techniker werden währenddessen von auswärtigen Hilfskräften unterstützt.

Arbeitsblatt, Text, Unterrichtsplanung

Logo creative commons

learn:line NRW

Themenfeld: Mit GeoGebra die Mathematik dynamisieren

GeoGebra ist eine dynamische Geometriesoftware (DGS) mit integriertem Computeralgebrasystem (CAS) und integrierter Tabellenkalkulation. In diesem Themenfeld wird auf Unterrichtsmaterial rund um GeoGebra verwiesen.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: kurze Erklärung | A.51

Funktionen müssen natürlich nicht zwingend nur von einer Variablen abhängen (also nur von “x”). Eine Funktion kann auch mehrere “x-Werte” haben, sie heißen dann auch “mehrdimensionale Funktionen”. Diese x-Werte heißen dann entweder x, y, z, .. oder “x1”, “x2”, “x3”, … Meist interessiert man sich nun für Extrempunkte, Tangenten (die nun aber keine Gerade sind, sondern eine Tangentialebene (!) oder sonst was). Wir werden ableiten (das heißt dann nach den verschiedenen, mehreren Variablen “partiell ableiten”), für die Extrempunkte werden wir die ersten Ableitungen Null setzen,... die Details sehen wir dann in den Unterkapiteln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 5 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 1 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 6 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung