Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 5 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Text

MatheGuru

Binomialkoeffizient

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Der Binomialkoeffizient findet vor allem Anwendung in der Stochastik aber auch in anderen Gebieten der Mathematik. Hier finden Sie eine Erläuterung und Anwendungsbeispiele.

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Tangentialebene wenn Ebene Punkt berührt, Beispiel 3 | V.06.15

Im Fall “Ebene berührt Kugel” hat man es mit Tangentialebenen zu tun. Eine Tangentialebene ist eine Ebene, die eine Kugel berührt. Der Verbindungsvektor vom Mittelpunkt zum Berührpunkt ist der Normalenvektor der Tangentialebene. Zusammen mit dem Berührpunkt als Stützvektor, kann man eine Gleichung der Tangentialebene aufstellen.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse / Kurvendiskussion

Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff “Funktionsanalyse” bzw. “Kurvendiskussion” zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das Aufleiten, welches korrekt Integrieren heißt oder Stammfunktion bilden. Dementsprechend redet man auch Differentialrechnung bzw. Integralrechnung. In diesem Hauptkapitel “1 Analysis” beschäftigen wir uns mit all diesen wichtigen und ganz wichtigen Grundlagen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 2 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 7 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Abstand Ebene-Kugel berechnen, Beispiel 1 | V.06.13

Abstand Ebene-Kugel berechnet man, indem man den Abstand der Ebene zum Kugelmittelpunkt berechnet (am besten über HNF). Ist dieser Abstand kleiner als der Kugelradius, schneiden sich Kugel und Ebene, es entsteht ein Schnittkreis. Ist der Abstand gleich dem Kugelradius, berühren sich Kugel und Ebene (man hat es mit einer Tangentialebene zu tun). Ist der Abstand größer als der Kugelradius, liegen Kugel und Ebene nebeneinander. Die Differenz von Abstand-Kugel-Ebene und dem Kugelradius ist der gesuchte Abstand von der Kugel zur Ebene.


Dieses Material ist Teil einer Sammlung

Arbeitsblatt, Unterrichtsplanung

Logo creative commons

Verein mathematisch-naturwissenschaftlicher Excellence-Center an Schulen e.V

Geometrische Ortslinien und Ortsbereiche auf dem Tablet - sketchometry im Unterricht

sketchometry, die dynamische Computersoftware für den Mathematikunterricht kann auf elektronischen Tafeln, Tablets oder Smartphones angewendet werden. Durch Skizzieren mit dem Finger entstehen geometrische Objekte und Konstruktionen, die sich mit einem oder zwei Fingern verändern, verschieben und drehen lassen. Schülerinnen und Schüler lassen sich unmittelbar zu forschend-entdeckendem Lernen anregen. Der Band bietet Unterrichtsmaterialien für den Geometrieunterricht der Sekundarstufe I unter Verwendung der kostenlosen und frei verwendbaren Mathematiksoftware sketchometry.

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Stochastik, Statistik, Wahrscheinlichkeitsrechnung: was ist das? Wie rechnet man damit?

“Stochastik” ist der Oberbegriff für “Statistik” und “Wahrscheinlichkeitsrechnung”. Der Übergang von Statistik und Wahrscheinlichkeit ist fließend, d.h. es gibt viele gemeinsame Bereiche, die schwer nur dem einen oder dem anderen zuzuordnen sind. Die Statistik beschäftigt sich tendenziell eher mit dem Sammeln von Daten und dem Versuch diese sinnvoll zu strukturieren. Die Wahrscheinlichkeitsrechnung geht davon aus, dass man bereits Fakten kennt und versucht Vorhersagen zu treffen. (Beispiel: Nehmen wir an, wir wollen die Körpergröße der Gesamtbevölkerung ermitteln. Zuerst sammeln wir Daten von vielen Leuten (wahrscheinlich von mehrere Tausend). Mit Hilfe der Statistik können wir dann z.B. sagen: 30% der Bevölkerung sind kleiner als 170cm. Mit Hilfe der Wahrscheinlichkeitsrechnung kann ich dann komplexere Aussagen treffen, z.B. mit welcher Wahrscheinlichkeit sind in einem Grüppchen von 18 Personen alle zwischen 165cm und 175cm?) Viele Schüler/Studenten mögen Stochastik anfangs nicht, da man nicht so arg nach “Schema F” gehen kann, wie in den meisten anderen mathematischen Bereichen. Bei vielen Aufgaben muss man schlichtweg “denken” und sich fragen, was in der Aufgabe eigentlich passiert und wie man das Ganze angehen könnte. Stochastik wird in allen Berufen und Wirtschaftszweigen immer wichtiger und gewinnt daher in den letzten Jahren auch in der Schule und Hochschule SEHR stark an Bedeutung.


Dieses Material ist Teil einer Sammlung