Suchergebnis für: Mathematik Zeige Treffer 1 - 10 von 117

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Text, Unterrichtsplanung

Projekt PriMaKom - TU Dortmund

Gesichertes Verständnis mathematischer Inhalte entwickeln

Ziel des Mathematikunterrichts ist es, dass die Kinder ein gesichertes Verständnis mathematischer Inhalte entwickeln. Dabei spielt die Gestaltung des Mathematikunterrichts eine zentrale Rolle, da die Kinder in diesem die Möglichkeit bekommen müssen, dieses Verständnis aufzubauen. Es werden zentralen Inhalte zu den folgenden Bereichen beispielhaft konkretisiert: Zahlen und Operationen, Raum und Form, Größen und Messen sowie Daten, Häufigkeit, Wahrscheinlichkeit. Dabei wird das notwendige Hintergrundwissen eng an der alltäglichen Unterrichtspraxis dargestellt, um eine Umsetzung im eigenen Unterricht zu ermöglichen.

Video

Havonix Schulmedien-Verlag

Terme: Was sind Terme überhaupt? Wie rechnet man mit Termen? | B.01

Wissen Sie genau was “Terme” ist? Ein Term ist in Mathe das, was im Alltag ein “Ding” ist. Ein Term kann so ziemlich alles sein. Allerdings wird der Begriff “Term” meistens für Klammern verwendet oder allgemein für irgendwelche Teile die mit “Mal” verbunden sind. (“Plus” und “Minus” sind also meist Anfang und Ende eines Terms.) In diesem Kapitel addieren und multiplizieren wir Terme (Klammern) miteinander. Mathematische Formulierung: Wir wenden sämtliche Grundrechenarten auf diverse Terme an.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Binomische Formeln und Binome ausrechnen, Beispiel 3 | B.01.02

Ein Binom ist eine Klammer mit zwei Termen innen drin, z.B. “(x+2)”. Für drei Sonderfälle gibt es die sogenannten binomischen Formeln. Sie lauten: 1. (a+b)²=a²+2ab+b², 2. (a-b)²=a²-2ab+b², 3. (a+b)(a-b)=a²-b². (Falls man die binomische Formeln vergisst, kann man beide Klammern auch einfach miteinander multiplizieren).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis, Beispiel 3 | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert | B.03.03

Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern: so klammert man einen Term richtig aus, Beispiel 2 | B.01.03

Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben “ausklammern”. Z.B. aus “ax²+bx” kann man “x” ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art “Rückwärts-Ausmultiplizieren”.


Dieses Material ist Teil einer Sammlung

Text, Unterrichtsplanung

Projekt PriMaKom - TU Dortmund

Guten und zeitgemäßen Mathematikunterricht gestalten

Die Berücksichtigung unterschiedlicher Lernvoraussetzungen und der produktive Umgang damit im eigenen Mathematikunterricht spielen z.B. eine wichtige Rolle in der Planung und Umsetzung von Mathematikunterricht. Die im Folgenden zu erabeitenden inhaltsübergreifenden Themen und Prinzipien des Mathematikunterrichts werden dabei an einem beispielhaften Inhalt konkretisiert. Üben, Heterogenität, Leistungsstarke Kinder, Sprachförderung, Standortbestimmungen, Materialeinsatz