Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Arbeitsblatt, Bild, Text, Unterrichtsplanung, Website

Projekt PIKAS - TU Dortmund

SOMA-Würfel

Nachstehend finden Sie Unterrichtsmaterial, das Sie vor der Einführung des “SOMA-Würfels" (Herleiten der “SOMA-Bausteine", Einheit 6 unter Lehrer- und Schüler-Material) und im Anschluss an eine Reihe zu Aktivitäten mit dem “SOMA-Würfel" (Eigenproduktionen, Einheit 11) einsetzen können


Arbeitsblatt, Bild, Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Expertenarbeit am Beispiel des SOMA-Würfels

In diesem Modul finden Sie eine Basisinformation zur Expertenarbeit aufgezeigt am Beispiel einer Unterrichtsreihe zum SOMA-Würfel sowie passendes Lehrer- und Schüler-Material


Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Mathematische Brieffreundschaften

Im Lehrplan Mathematik wird das “Kooperieren" explizit als Teilaspekt der prozessbezogenen Kompetenz “Kommunizieren/ Darstellen" genannt (vgl. MSW 2008, S. 60). Nicht zuletzt deshalb sind kooperative Arbeitsphasen im Unterricht unverzichtbar


Arbeitsblatt, Bild, Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Dinosaurier

Sachtexte bieten einen sinnvollen Anlass, mathematische Fertigkeiten zu üben und zu vertiefen. Gleichzeitig kann in Verbindung zum Sachunterricht Sachwissen erworben und bewusster durchdrungen werden


Arbeitsblatt, Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Blitzrechen-Plakate - Transparente Förderung des schnellen Kopfrechnens

Das "schnelle Kopfrechnen" (vgl. Lehrplan Mathematik 2008, S. 62) dient der Förderung mathematischer Basiskompetenzen


Arbeitsblatt, Bild, Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Authentische Schnappschüsse

Mit Hilfe sogenannter “authentischer Schnappschüsse" - im vorliegenden Unterrichtsmaterial handelt es sich dabei um Kurzmeldungen aus Tageszeitungen - sollen die Kinder dazu angeregt werden, mathematische und nicht-mathematische Fragestellungen zu entwickeln, relevante Informationen aus den Zeitungsartikeln zu entnehmen und gegebenenfalls “Rechenaufgaben" zu finden und zu lösen


Text, Unterrichtsplanung, Video

Projekt PIKAS - TU Dortmund

Mathe-Konferenzen - Eine strukturierte Kooperationsform zur Förderung der sachbezogenen Kommunikation unter Kindern

Der Lehrplan Mathematik greift bei der Erläuterung der von Grundschulkindern zu erwerbenden prozessbezogenen Kompetenz “Darstellen/ Kommunizieren" beispielhaft die Methode “Rechenkonferenz" auf