Video

Havonix Schulmedien-Verlag

Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 3 | A.54.04

Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine “1” steht oder eine andere komplexe Zahl. (Ob es also im eine Kehrwertberechnung geht oder um eine Division).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 7 | A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum “Addieren” sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum “Multiplizieren” sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren | A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum “Addieren” sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum “Multiplizieren” sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 4 | A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren, Beispiel 2 - A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist "n". Der Betrag der neuen Zahl ist der alte Betrag hoch "n". Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit "n" multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren | A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist “n”. Der Betrag der neuen Zahl ist der alte Betrag hoch “n”. Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit “n” multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 2 - A.54.01

Das "Konjugierte" eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die "Normalform", oder "kartesische Darstellung" oder "kartesische Koordinaten" oder … 2) Schreibt man die komplexe Zahl in die Form z=r*e^(i*x) um, nennt man das "Polarform" oder "Polarkoordinate" oder "Exponentialdarstellung" oder … Hierbei ist "r" der "Betrag" der Zahl (ist Abstand der Zahl zum Ursprung, kann daher als Radius interpretiert werden) und "x" ist der Winkel der vom Ursprung aus zwischen der Zahl (einem Punkt in der Zahlenebene) und der x-Achse erscheint. Dieser Winkel Wird als "Argument" bezeichnet und eigentlich mit dem griechischen Buchstaben "phi" bezeichnet (nicht mit x). 3) die dritte Form ist die "trigonometrische Form", welche eine Mischung aus Polarform und kartesischer Form.


Dieses Material ist Teil einer Sammlung