Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 7 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis, Beispiel 4 | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzgesetze und Potenzregeln: was ist das überhaupt? Wie rechnet man damit richtig? | B.03

Bei Potenzproblemen in Mathe hilft leider auch kein Viagra. Sie müssen sich leider durch alle Potenzregeln und Potenzgesetze kämpfen. Davon hat´s zum Glück nur eine Hand voll, die wir in den Unterkapiteln betrachten. Vorab ein paar Begriffe: Betrachten wir eine Potenz der Form: “a^n”: Die untere Zahl “a” heißt “Basis”, andere Begriffe sind eigentlich nicht gebräuchlich. Die obere Zahl “n” heißt “Hochzahl”, “Exponent”, “Potenz”. Der GESAMTE Ausdruck (Basis und Hochzahl) wird oft ebenfalls mit “Potenz” bezeichnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis, Beispiel 2 | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 1

Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis, Beispiel 5 | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 5 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung