Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Bis zur Unendlichkeit und weiter

Im Goldenen Zeitalter der Mathematik im Europa des 18. und 19. Jahrhunderts fanden die Mathematiker neue Wege der Analyse von Körpern in Bewegung, was es möglich machte, den Raum zu begreifen. Im Sommer 1900 stellte David Hilbert, ein junger deutscher Mathematiker, in seinem Vortrag auf dem Internationalen Mathematikerkongress in Paris die dreiundzwanzig wichtigen ungelösten mathematischen Probleme vor, er gab damit den Fahrplan für die Mathematik des 20. Jahrhunderts vor. Zahlreiche Wissenschaftler haben seitdem daran gearbeitet. Von den 23 Problemen konnten so die meisten gelöst werden. Doch gerade die ungelösten Probleme machen die Mathematik auch zukünftig zu einem lebendigen Fachgebiet und eine Herausforderung für folgende Generationen.

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Sprache des Universums

Berechnungen der Zeit beeinflussten der Welt älteste Erfindungen: Schon in alten Kulturen fanden sich Kalender, die auf Mondzyklen beruhten, Anthropologen fanden bis zu 37.000 Jahre alte Knochen mit 29 Markierungen, die die Tage eines Monats darstellen. Die ersten mathematischen Systeme wurden in Babylon, Ägypten und Griechenland entwickelt. So wandten schon die Babylonier mathematische Konstrukte an, die Pythagoras erst 1000 Jahre später entwickeln sollte. Auch im alten Ägypten war man daran interessiert, praktische mathematische Aufgaben zu lösen, die mit Messen und Wiegen zu tun hatten. Hier entwickelte man das Potential eines mathematischen Binärsystems schon 3000 Jahre vor Gottfried Wilhelm Leibniz. Heute beruht die gesamte Welt der Technik auf den selben Prinzipien, die schon im alten Ägypten genutzt wurden.

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: “dy/dx”, multipliziert die gesamte Gleichung mit “dx” und versucht nun auch im Folgenden, alle “x” auf eine Seite der Gleichung zu bringen, alle “y” auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante “+c” nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein “x”-Wert und ein zugehöriger “y”-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante “c” bestimmen. Dieses Verfahren nennt sich “Trennung der Variablen” oder “Variablentrennung”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So löst man eine Differentialgleichung DGL, Beispiel 2 - A.53.01

Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl Funktion als auch Ableitung in die DGL einsetzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Differentialgleichung: Was ist eine DGL und wie rechnet man damit? - A.53

Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt "relativ einfach" (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. Spätestens ab Kap.4.3.3 haben wir den Schulstoff verlassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 - A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: "dy/dx", multipliziert die gesamte Gleichung mit "dx" und versucht nun auch im Folgenden, alle "x" auf eine Seite der Gleichung zu bringen, alle "y" auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante "+c" nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein "x"-Wert und ein zugehöriger "y"-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante "c" bestimmen. Dieses Verfahren nennt sich "Trennung der Variablen" oder "Variablentrennung".


Dieses Material ist Teil einer Sammlung