Suchergebnis für: Mathematik Zeige Treffer 21 - 30 von 681

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: “dy/dx”, multipliziert die gesamte Gleichung mit “dx” und versucht nun auch im Folgenden, alle “x” auf eine Seite der Gleichung zu bringen, alle “y” auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante “+c” nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein “x”-Wert und ein zugehöriger “y”-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante “c” bestimmen. Dieses Verfahren nennt sich “Trennung der Variablen” oder “Variablentrennung”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Hyperbel / Hyperbeln berechnen, Beispiel 6 A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein "x" stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind "1/x", "1/x²",... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff "Asymptoten" verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Hyperbel / Hyperbeln berechnen, Beispiel 1 - A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein "x" stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind "1/x", "1/x²",... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff "Asymptoten" verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung