Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 4 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 4 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Genies des Ostens

Die große chinesische Mauer ist ein wahres Bravourstück der Statik, gebaut durch eine hochgelegene und raue Landschaft. Schon mit dem Beginn des Baues erkannten die alten Chinesen, dass sie besondere Berechnungen anstellen mussten, um den Entfernungen, den Steigungswinkeln und den ungeheuren Materialmengen gerecht zu werden. Die Chinesen waren auch die ersten, die ein dezimales Stellenwertsystem nutzten. Indien war die erste Zivilisation, die ein entsprechendes Zahlensystem mit einem Stellenwert für die Zahl Null entwickelte. Sie hatten auch schon eine Methode um die mathematische Zahl Pi zu beschreiben. Im 7. Jahrhundert entstand dann in Bagdad ein Zentrum, hier unternahm man den Versuch, das gesammelte mathematische Know-How der Griechen, Inder und Babylonier zusammenzustellen. Astronomie, Medizin, Chemie, Zoologie und Mathematik wurden hier gelehrt.

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Sprache des Universums

Berechnungen der Zeit beeinflussten der Welt älteste Erfindungen: Schon in alten Kulturen fanden sich Kalender, die auf Mondzyklen beruhten, Anthropologen fanden bis zu 37.000 Jahre alte Knochen mit 29 Markierungen, die die Tage eines Monats darstellen. Die ersten mathematischen Systeme wurden in Babylon, Ägypten und Griechenland entwickelt. So wandten schon die Babylonier mathematische Konstrukte an, die Pythagoras erst 1000 Jahre später entwickeln sollte. Auch im alten Ägypten war man daran interessiert, praktische mathematische Aufgaben zu lösen, die mit Messen und Wiegen zu tun hatten. Hier entwickelte man das Potential eines mathematischen Binärsystems schon 3000 Jahre vor Gottfried Wilhelm Leibniz. Heute beruht die gesamte Welt der Technik auf den selben Prinzipien, die schon im alten Ägypten genutzt wurden.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 1 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.

Bild, Text

Logo creative commons

Projekt PRIMAS, Pädagogische Hochschule Freiburg

Mathematik in unserer Umgebung

Mathematik können wir überall in unserer Umgebung entdecken. Wo begegnet uns in unserem täglichen Leben überall Mathematik? Mit Fotos aus dem Lebensumfeld der Schülerinnen und Schüler können die Kinder dieser Frage nachgehen. Außerdem kann die Fähigkeit geschult werden, mathematisch relevante Fragen zu stellen und diese dann auch mit Hilfe der Mathematik zu beantworten.

Bild, Text

Logo creative commons

Projekt PRIMAS, Pädagogische Hochschule Freiburg

Mathematik in meiner Freizeit

Mathematik finden Schülerinnen und Schüler nicht nur im Schulbuch sondern überall im eigenen Leben. Eine sehr motivierende Aufgabenstellung für den Unterricht kann die Verknüpfung des eigenen Hobbys mit der Mathematik sein. Die Leitfrage für eine ca. einwöchige Arbeitsphase lautet: "Wie viel Mathematik steckt eigentlich in meiner Freizeit?" Die Schüler sollten zur Bearbeitung der Aufgabe dazu angehalten werden, das der Klassenstufe entsprechende mathematische Fachwissen zu nutzen.