Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 3 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 1 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik, wie man mit ihr rechnet und wer diese Themen beherrschen sollte

Im Hauptkapitel “4 Analysis - Höhere Mathematik” behandeln wir Themen, die hauptsächlich nach dem schriftlichen Abitur, bzw. hauptsächlich an der Hochschule behandelt werden. Einige, wenige Themen lernen Sie vielleicht auch VOR dem Abitur, jedoch die wenigsten hiervon.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 4 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Verkettete Funktionen berechnen, Beispiel 1 | A.52.03

Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als “f nach g von x”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln: Was ist das mathematisch überhaupt? Wie kann man eine Wurzel berechnen? B.04

Eine Wurzel ist mathematisch gesehen nichts anderes als eine Potenz. Die normale Wurzel (heißt auch “Quadratwurzel”) entspricht einer Hochzahl von ½. Dritte Wurzeln (heißen auch “Kubikwurzeln”) entsprechen einer Hochzahl von 1/3. Allgemein gilt also: n-te Wurzel schreibt man um zu “hoch 1/n”. Begriffe: Der Term unter dem Wurzelzeichen heißt “Radikand”. Die “Höhe” der Wurzel (bei Quadratwurzel: 2, bei dritter Wurzel: 3, bei vierter Wurzel: 4, …) heißt Wurzelexponent. Ist der Wurzelexponent gerade, muss der Radikand positiv sein. Ist der Wurzelexponent ungerade, kann der Radikand beliebiges Vorzeichen haben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So löst man eine Differentialgleichung DGL, Beispiel 1 | A.53.01

Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl Funktion als auch Ableitung in die DGL einsetzt.


Dieses Material ist Teil einer Sammlung