Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 4 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 1 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 2 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 6 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Video

Havonix Schulmedien-Verlag

Verkettete Funktionen berechnen, Beispiel 2 | A.52.03

Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als “f nach g von x”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Verkettete Funktionen berechnen, Beispiel 1 | A.52.03

Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als “f nach g von x”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So löst man eine Differentialgleichung DGL, Beispiel 2 - A.53.01

Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl Funktion als auch Ableitung in die DGL einsetzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Differentialgleichung: Was ist eine DGL und wie rechnet man damit? - A.53

Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt "relativ einfach" (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. Spätestens ab Kap.4.3.3 haben wir den Schulstoff verlassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So löst man eine Differentialgleichung DGL | A.53.01

Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl Funktion als auch Ableitung in die DGL einsetzt.


Dieses Material ist Teil einer Sammlung