Video

Havonix Schulmedien-Verlag

Cardanische Formel zur Lösung einer Gleichung dritten Grades, Beispiel 1 | A.54.08

Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich braucht auch kein Mensch die Lösungsformel (grad weil sie so hässlich ist). Aber sie sollen ja nicht dumm sterben (und UNS hat das Filmen Spaß gemacht).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 3 - A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren, Beispiel 1 | A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist “n”. Der Betrag der neuen Zahl ist der alte Betrag hoch “n”. Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit “n” multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 1 | A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren, Beispiel 4 | A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist “n”. Der Betrag der neuen Zahl ist der alte Betrag hoch “n”. Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit “n” multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen: kurze Einführung | A.54

Eine imaginäre Zahl erhält man, wenn man die Wurzel aus einer negativen Zahl zieht (oder sich vorstellt, dass das ginge). Die Wurzel aus “-1” wird mit “i” bezeichnet (manche verwenden auch “j” statt “i”). Zählt man zu imaginären Zahlen noch reelle Zahlen dazu, erhält man komplexe Zahlen. Beispielsweise ist “z=3+5i” eine komplexe Zahl. Die “3” ist der Realteil davon und wird mit re(z) abgekürzt => re(z)=3. Die “5”, die vor dem “i” steht, ist der Imaginärteil von z und wird mit im(z) abgekürzt == im(z)=5. Einzeichnen von komplexen Zahlen: natürlich reicht ein Zahlenstrahl nicht, man braucht zwei Achsen. Diese nennt man dann “komplexe Zahlenebene” oder “Gaußsche Zahlenebene”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 1 | A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 1 - A.54.01

Das "Konjugierte" eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die "Normalform", oder "kartesische Darstellung" oder "kartesische Koordinaten" oder … 2) Schreibt man die komplexe Zahl in die Form z=r*e^(i*x) um, nennt man das "Polarform" oder "Polarkoordinate" oder "Exponentialdarstellung" oder … Hierbei ist "r" der "Betrag" der Zahl (ist Abstand der Zahl zum Ursprung, kann daher als Radius interpretiert werden) und "x" ist der Winkel der vom Ursprung aus zwischen der Zahl (einem Punkt in der Zahlenebene) und der x-Achse erscheint. Dieser Winkel Wird als "Argument" bezeichnet und eigentlich mit dem griechischen Buchstaben "phi" bezeichnet (nicht mit x). 3) die dritte Form ist die "trigonometrische Form", welche eine Mischung aus Polarform und kartesischer Form.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 6 | A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 4 | A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung