Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 1 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: “dy/dx”, multipliziert die gesamte Gleichung mit “dx” und versucht nun auch im Folgenden, alle “x” auf eine Seite der Gleichung zu bringen, alle “y” auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante “+c” nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein “x”-Wert und ein zugehöriger “y”-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante “c” bestimmen. Dieses Verfahren nennt sich “Trennung der Variablen” oder “Variablentrennung”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 2 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung