Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 3 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 4 | A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren, Beispiel 2 - A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist "n". Der Betrag der neuen Zahl ist der alte Betrag hoch "n". Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit "n" multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren | A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist “n”. Der Betrag der neuen Zahl ist der alte Betrag hoch “n”. Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit “n” multipliziert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 4 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 1

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 6

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 3

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Cardanische Formel zur Lösung einer Gleichung dritten Grades - A.54.08

Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich braucht auch kein Mensch die Lösungsformel (grad weil sie so hässlich ist). Aber sie sollen ja nicht dumm sterben (und UNS hat das Filmen Spaß gemacht).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 - A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung