Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d, Beispiel 1 | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d, Beispiel 2 | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 6 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 5 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Einfache trigonometrische Gleichungen lösen | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung