Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d, Beispiel 1 | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x-c))+d, Beispiel 2 | A.42.08

Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x-c))+d bzw. f(x)=a·cos(b(x-c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit positiver Steigung, bei cos: c=x-Wert des Hochpunkts), d=Mittellinie der Funktion=Verschiebung in y-Richtung


Dieses Material ist Teil einer Sammlung

Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Video

WDR - Westdeutscher Rundfunk (Köln)

Die Geschichte der Mathematik / The Story of maths: Die Grenzen des Raumes

Im 17. Jahrhundert übernahm Europa vom Nahen Osten die Vorreiterrolle in Sachen Mathematik. Piero della Francesca war nicht nur Maler sondern auch Mathematiker, er perfektionierte die Perspektive in der italienischen Malerei. Sein Werk war der Beginn eines neuen Geometrieverständnisses. Der französische Mathematiker und Philosoph René Decartes verband Algebra mit Geometrie, ein Schritt, der die Welt der Mathematik entscheidend verändern sollte. Die Universitäten von Oxford und Cambridge bildeten im 17. Jahrhundert einige führende Mathematiker aus, einer von ihnen: Isaac Newton. Er entwickelte eine neue Theorie des Lichts, entdeckte die Gravitation und skizzierte einen revolutionären Ansatz zur Mathematik: Die Infinitesimalrechnung. Newtons Berechnungen machten es möglich, die Welt in ihren Veränderungen zu begreifen.

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer trigonometrischen Funktion, Beispiel 2 | A.42.11

Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 1

Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der Abstand hiervon zu den Hoch- bzw. Tiefpunkten ist die Amplitude a. Der Abstand zwischen zwei Tiefpunkten oder zwischen zwei Hochpunkten ist die Periode. Daraus kann man b bestimmen. Zum Schluss liest man c aus (welches der x-Wert vom Hochpunkt [bei cos] bzw. der x-Wert des Wendepunkts [bei sin] ist). Die Parameter setzt man in y=a·sin(b[x-c])+d ein.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Periode von trigonometrischen Funktionen berechnen, Beispiel 3 | A.42.01

Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so einfach angegeben werden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03

Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man nach sin(...) oder cos(...) auf. 2.Man substituiert das Argument (d.h. Man wendet Substitution an, in dem man das Innere der Klammer “u” nennt). 3.Man bestimmt mittels Taschenrechner oder Wertetabelle einen Wert von “u”. 4.(Der entscheidende Schritt) Bei sin: die zweite Lösung lautet: u2=Pi-u1. Bei cos: u2=-u1. 5.Man resubstituiert, um aus “u1” und “u2” die Werte “x1” und “x2” zu erhalten. 6.erhaltenen x-Werte kann man beliebig oft um je eine Periode nach links oder rechts verschieben (falls das notwendig ist).


Dieses Material ist Teil einer Sammlung