Suchergebnis für: LEARNLINE-00009604 Zeige Treffer 1 - 1 von 1

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.45.06

Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man das asymptotische Verhalten bestimmt. (Falls x gegen Unendlich läuft und die y-Werte gegen eine Zahl, hat man eine waagerechte Asymptote. Falls x gegen eine Zahl läuft und die y-Werte gegen Unendlich, hat man eine senkrechte Asymptote.)


Dieses Material ist Teil einer Sammlung