Suchergebnis für: LEARNLINE-00009516 Zeige Treffer 1 - 1 von 1

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen | A.43.06

Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass man die größten Hochzahlen von Zähler und Nenner vergleicht und dabei vier Fälle unterscheidet. Schiefe Asymptoten betrachten wir im nächsten Unterkapitel.


Dieses Material ist Teil einer Sammlung