Bild

Siemens Stiftung

Geigenkorpus als Resonanzkörper

Foto:Die allseits bekannte Geige als Beispiel, wie die Schwingung einer Saite erst über einen Resonanzkörper auf Hörbarkeit verstärkt wird.Die Schwingung einer Saite ohne Resonanzkörper könnte man kaum wahrnehmen. Deshalb wird die Schwingung auf den Geigenkorpus übertragen, der nun auch noch das in ihm enthaltene Luftvolumen zum Mitschwingen bringt. Material und Form des Geigenkorpus werden so gewählt, dass einerseits eine gute Verstärkung (Resonanz) bei möglichst vielen unterschiedlichen Frequenzen eintritt. Durch die Eigenfrequenzen der einzelnen Teile und die des Gesamtkörpers werden darüber hinaus bestimmte Grund- und Obertöne besonders verstärkt bzw. zusätzlich erzeugt. Es entsteht der individuelle Klangcharakter jeder einzelnen Geige. Hinweise und Ideen:Anhand eines praktischen Beispiels aus der Musik wird die Wichtigkeit von Physik und Akustik auch für Kunst und Kommunikation klar. Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Frequenzdifferenzierung in der ausgerollten Schnecke

Grafik, beschriftet: Hohe Töne werden im vorderen Teil der Schnecke, tiefe Töne dagegen im hinteren Teil wahrgenommen.Da der Hörsinn den Ort der Ableitung der Nerven von den Hörzellen differenziert, erkennt er die Frequenzen. Hinweise und Ideen:Diese Grafik eignet sich gut für eine Überleitung - es werden die Themen “Schall” und “Hören” miteinander verknüpft.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:SchallwahrnehmungDas menschliche Hörvermögen Kommunikation und VerständigungDer menschliche KörperBau und Leistung eines Sinnesorgans

Bild

Siemens Stiftung

Farbe und Spannung bei LED

Foto:Die Betriebsspannung bei LED hängt von der Farbe ab. Dies ist ein Hinweis auf diskrete Energieniveaus und den Photonencharakters des Lichts.Welche Farbe eine LED abstrahlt, hängt vom Energieniveau des Ladungsübergangs vom Nichtleitungsband ins Leitungsband ab. Je nach Grundmaterial (Si, GaAs, GaN usw.) und Dotierung, sowie innerem Widerstand besitzt jede LED eine typische Betriebsspannung (Spannung = Potential = Energiedifferenz). Die wird zwar von Bauform (innerem Widerstand usw.) modifiziert, ist aber letztlich vom diskreten Energieniveau des Ladungsübergangs zwischen Nichtleitungs- und Leitungsband bestimmt.Hinweise und Ideen:Das abstrakte Prinzip der Quantisierung von Energie in Form von Photonen wird in einem extrem einfachen Experiment mit vier LED und einem Netzgerät deutlich. Rote LED leuchten ab ca. 1,5 Volt, gelbe ab ca. 1,9 Volt, grüne ab ca. 2,3 Volt und blaue ab ca. 3,3 Volt.Eine Anleitung für den Bau eines geregelten LED-Farbmischers findet man in der Experimentieranleitung “Experimente - Energiequantisierung mit LEDs” auf dem Medienportal der Siemens Stiftung.

Bild

Siemens Stiftung

Beugung

Grafik: Beugung von Wellen beim Auftreffen auf ein Hindernis.Die Grafik zeigt die möglichen Beugungseffekte in Abhängigkeit von Blendenöffnung und Wellenlänge.Hinweise und Ideen:Auch bei Schallwellen kommt es zur Beugung, zum Beispiel an Hausecken.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Licht Optik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Außenohr im Schnitt - Beschriftungspfeile

Grafik, unbeschriftet: Die Grafik zeigt in einer Schnittansicht des Gesamtohrs, welche Teile des Ohrs zum äußeren Ohr gehören. Diese Teile sind farblich hervorgehoben.Zum äußeren Ohr gehören die Ohrmuschel und der Gehörgang. Der Gehörgang endet am Trommelfell. In der häutigen Wand des Gehörgangs befinden sich Drüsen, die das Cerumen, das Ohrenschmalz, bilden. Am Rand des Gehörgangs befinden sich kleine Härchen, die Haarbälge, welche dem Schutz vor Fremdkörpern dienen.Hinweise und Ideen:Hilfreich, um Außen-, Innen-, Mittelohr voneinander abzugrenzen. Einsetzbar in einem Arbeitsblatt, zur gemeinsamen Erarbeitung über den Beamer, als Overhead-Folie.Unterrichtsbezug:Der menschliche KörperBau und Leistung eines Sinnesorgans

Bild

Siemens Stiftung

Blitz - elektrische Energie vom Himmel

Foto:Blitzschlag zwischen Erde und Wolke - ein schönes Beispiel für elektrische Energie in der Natur.Aufsteigende Luftströme erzeugen aus mechanischer Energie durch Reibung Elektrizität in Form elektrisch aufgeladener Wolken bis zu einer Ladung von ca. 20 As (Amperesekunde). Wenn der Spannungsunterschied zwischen der Gewitterwolke und der Erde über 100 Mio. V beträgt, kommt es zu einer gewaltigen Entladung als Lichtbogen. Da die Entladung in Bruchteilen einer Sekunde erfolgt, können hohe Stromstärken bis 100.000 A auftreten. Bei einer Entladungszeit von z. B. 0,4 ms, beträgt die Stromstärke 50.000 A. Bei dieser Stromstärke liegt die Leistung eines Blitzes bei 5 Terawatt (TW). 1 TW entspricht einer Billion Watt. Dabei wird eine Energie von 560 kWh freigesetzt.Hinweise und Ideen: Zur Vertiefung könnte die Physik der Gasentladung angesprochen werden. Interessant ist es auch, den Energieinhalt eines Blitzes zu berechnen und mit dem Heizwert von Benzin zu vergleichen. Welcher Benzinmenge entspricht die Energie eines Blitzes? Ein weiteres Beispiel für das Vorkommen elektrischer Energie in der Natur sind Zitteraale, sie produzieren die elektrische Energie aus einer biochemischen Reaktion.

Bild

Siemens Stiftung

Ampulle des Drehsinnorgans

Grafik, beschriftet: Eine Ampulle des Drehsinnorgans mit Gallertkappe, die von der Endolymphe umgeben ist. Die Bewegung der Lymphe verformt die Gallertkappe.Die Gallertkappe in der Ampulle eines Bogenganges wird durch die Strömung der Lymphe nach rechts oder links gedrückt. Die Sinneszellen am Grund der Gallertkappe werden gereizt.Hinweise und Ideen:Mit dieser Grafik kann sehr gut die Funktion des Drehsinns im Innenohr gezeigt werden.Unterrichtsbezug:Bau und Leistung eines SinnesorgansReizaufnahme und Informationsverarbeitung

Bild

Siemens Stiftung

Pila alcalina

Fotografía:
La pila alcalina es uno de los dispositivos de almacenamiento de energía electroquímica más importantes en la vida diaria. Es una celda galvánica compuesta de un ánodo de cinc, un cátodo de dióxido de manganeso y solución de hidróxido de potasio como el electrolito.


Información e ideas:
Un ejemplo de la conversión de energía química en energía eléctrica.

Bild

Siemens Stiftung

Cuerpo del violín como caja de resonancia

Fotografía:
El familiar violín como ejemplo de cómo la vibración de una cuerda se amplifica con una caja de resonancia.


Sin una caja de resonancia la vibración de una cuerda sería casi inaudible. Es por ello que la vibración se transmite a la caja del violín, la cual hace que el volumen de aire dentro de ésta comience a vibrar también. El material y la forma de la caja del violín se escoge de manera tal que, por un lado, haya buena amplificación (resonancia) con el mayor número de frecuencias posible. Debido a las frecuencias naturales de las partes individuales y aquella de la caja del violín, se amplifican mucho o se producen adicionalmente ciertas armónicas y armónicas superiores. Es eso lo que crea el carácter del tono individual de cada violín.

Información e ideas:
Un ejemplo práctico del mundo de la música ilustra la importancia de la física y la acústica para el mundo del arte y las comunicaciones.

Pertinente a la enseñanza de:
Sonido/acústica: parámetros
Vibraciones y ondas

Medientypen

Bild

Lernalter

6-18

Schlüsselwörter

Sonido

Sprachen

Spanisch

Bild

Siemens Stiftung

Reconocimiento de voz: oración, sílaba, fonema

Diagrama:
Se presentan visualmente los componentes del habla, desde el fonema hasta la oración.


El gráfico muestra la curva osciloscópica de la oración hablada "Está lloviendo a cántaros? y extractos de las unidades de las que se compone el habla: oración, palabra, fonema.

Información e ideas:
El reconocimiento de la voz y la síntesis de la voz son temas de mucha actualidad en el campo de tecnología informática y de comunicaciones.

Hay disponible mayor información sobre este gráfico, como hoja informativa, en el portal de medios didácticos de la Siemens Stiftung.

Pertinente a la enseñanza de:
El cuerpo humano
Estructura y función de un órgano sensorial
Recepción de estímulos y procesamiento de información
Percepción sensorial