Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Anteil der Energieträger am weltweiten Strommix von 2005 bis 2040

%iagramm:Das Diagramm zeigt, dass die regenerativen Energien ab ca. 2040 auch weltweit den größten Anteil an der Stromerzeugung haben werden. Es wird deutlich, dass auch in Zukunft die fossilen Energieträger, insbesondere die Kohle, und die dafür entwickelten Kraftwerkstechnologien eine zentrale Rolle bei der Energieversorgung spielen werden. Diese Rolle wird aber zunehmend kleiner.Hinweise und Ideen:In Deutschland sowie in einigen anderen Ländern soll laut Prognosen der Anteil der regenerativen Energien an der Stromerzeugung wesentlich schneller steigen als am gesamten Primärenergieverbrauch. In Deutschland z. B. soll der Anteil in 2040 bei Strom bereits über 65 % liegen. Weltweit liegen die Prognosen sowohl bei Strom als auch beim Gesamtprimärenergieverbrauch (also Strom + Verkehr + Wärmeerzeugung) allerdings gleichauf bei gut 30 %. Wie kann man diesen Unterschied erklären?Unter Verwendung der Quelle: “World Energy Outlook 2012”, International Energy Agency IEA (2012%


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Generator für Windrad

Foto:Rotor des Generators einer Windenergieanlage.Es handelt sich hier um einen Vielpol-Generator, erkenntlich an der Vielzahl von Spulen auf dem äußeren Ring. Diese bewegen sich bei Betrieb an einem Statorring vorbei, der mit einer entsprechenden Anzahl von Permanentmagneten bestückt ist. Im Innenbereich des Rotors kann man die Regelelektronik erkennen. Diese Vielpol-Generatoren mit Permanentmagneten liefern bei relativ geringem Volumen und geringer Masse über einen weiten Drehzahlbereich gute Leistung. Auf ein Getriebe zur Anpassung der Frequenz des gelieferten Wechselstroms kann verzichtet werden. Der Wechselstrom, egal welcher Drehzahl, wird zunächst gleichgerichtet und anschließend nach elektronischer Wechselrichtung mit exakt 50 Hz ins Netz eingespeist. Hinweise und Ideen:Wie hängt die Frequenz eines Wechselstromgenerators von der Drehzahl ab? Warum haben herkömmliche Windräder eine aufwändige Drehzahlregelung mit Getriebe und Generatoren mit abschaltbaren Polpaaren?

Bild

Siemens Stiftung

Windrad in Landschaft

Foto:Windrad mit umgebender LandschaftDas abgebildete Windrad mit 3 MW Leistung steht in Oberbayern. Obwohl diese Gegend nicht besonders windreich ist, lieferte es von Ende 2014 bis Anfang 2017 mehr Strom als geplant und hat sich als wirtschaftlich erwiesen. Überprüfungen ergaben, dass das Windrad in diesem Zeitraum keine negativen Auswirkungen auf Vögel und Fledermäuse hatte.Hinweise und Ideen:Das Foto eignet sich als Einstieg ins Thema Windenergie und Umwelt. Rechercheauftrag: Die Schülerinnen und Schüler können recherchieren, welche gesetzlichen Vorgaben es für die Aufstellung von Windkraftanlagen gibt. Und welche Argumente werden für und gegen die Aufstellung solcher Windräder genannt?


Bild

Siemens Stiftung

Funktionaler Aufbau eines Windrads

Grafik:Windrad in seinem gesamten Aufbau mit Sockel und Turm schematisch dargestellt.Das Fundament bildet die Verankerung der Windkraftanlage im Erdreich. Um die Standfestigkeit der Windenergie-Anlage zu gewährleisten, wird je nach Festigkeit des Untergrundes eine Pfahl- oder Flachgründung vorgenommen. Der Turm ist das größte und schwerste Teil einer Windenergieanlage. Er ist üblicherweise zwischen ein bis 1,8 Mal länger als der Rotordurchmesser und kann mehrere Hundert Tonnen schwer sein. Die Turmkonstruktion selbst trägt nicht nur die Massen der Maschinengondel und der Rotorblätter, sondern muss auch die enormen statischen Belastungen durch die wechselnden Kräfte des Windes auffangen. Man verwendet in der Regel Rohrkonstruktionen aus stapelbaren Beton- oder Stahlsegmenten. Die Turmhöhe bzw. die Nabenhöhe beträgt bei 3 MW bis ca. 6 MW Leistung und bei einem Rotordurchmesser von ca. 110 bis 130 m zwischen ca. 120 bis 130 m.Der Rotor ist diejenige Komponente, die mithilfe der Rotorblätter die im Wind enthaltene Energie in eine mechanische Drehbewegung umwandelt. Die Gondel mit Maschinenstrang (Triebstrang) enthält den gesamten Maschinensatz. (Funktionen im Detail siehe Medium “Windrad - Innenansicht”!)Hinweise und Ideen: Im Rahmen des Physikunterrichts könnte geklärt werden, warum es bei Durchströmung mit Wind zu einer Bewegung der Rotorbätter kommt (Strömungslehre von Venturi und Bernoulli).

Bild

Siemens Stiftung

Windrad - Innenansicht

%rafik, beschriftet:Rotor und Gondel (“Maschinenhaus”) eines Dreiflügel-Windrads mit horizontaler Drehachse. Die Innenansicht der Gondel wird gezeigt, die einzelnen Komponenten sind beschriftet.Das hier gezeigte Dreiflügel-Windrad mit horizontaler Rotationsachse ist bei großen Windkraftanlagen die häufigste Konstruktion. Das Windrad besteht aus einem Rotor und einer Gondel (“Maschinenhaus”), die auf einem hohen Turm angebracht sind.Das Funktionsprinzip: Das Anemometer misst die Windgeschwindigkeit. Die Daten werden an den Überwachungscomputer gesendet. Dieser steuert das Windrad und bedient den Nachführmotor, der das Windrad ausrichtet. Steht das Windrad optimal zum Wind, so übt dieser ein Drehmoment auf die Rotorblätter aus: Das Windrad dreht sich (ca. 20 Umdrehungen/min) und mit ihm die Antriebswelle. Das Getriebe wandelt die Drehzahl des Rotors in die für den Generator nötige Drehzahl (in Europa 1.500 U/min oder 3.000 U/min, in den USA 1.800 U/min oder 3.600 U/min) um. Der Generator erzeugt den Strom. Dieser wird über Kabel zum Fuß des Windrads hinuntergeleitet. Dort erfolgt die Einspeisung ins Netz. Der Wirkungsgrad eines Windrads liegt bei optimalen Windverhältnissen bei 40 - 51 %. (Der theoretisch maximale Wert liegt bei 59,3 %, ist aber praktisch nicht erreichbar.)Übrigens: Die Bremse sorgt dafür, dass das Windrad sich nicht drehen kann, z. B. bei extremem Sturm oder wenn es gewartet werden muss. (Es gibt auch Windräder ohne Getriebe, siehe dazu die Beschreibung beim Medium “Generator für Windrad”!). Hinweise und Ideen:Welche Vorteile hat ein Dreiflügel-Windrad gegenüber einem Ein-, Zwei- oder Vierblattflügler?Es lohnt der Hinweis, dass es auch Windräder mit vertikaler Drehachse gibt (Savonius-, Darrieus-Windrad). Wann setzt man diese Bauformen ein%

Bild

Siemens Stiftung

Kühe und Treibhausgase

Foto:Im Magen von Wiederkäuern, z. B. Kühen, entsteht Methan. Kühe und andere Weidetiere, wie Schafe, produzieren in ihren Mägen (Pansen) Methan. Gelangt das Gas in die Atmosphäre, wird es zum schädlichen Treibhausgas. Der tägliche Methangasausstoß einer Milchkuh beträgt ca. 230 Liter. Daraus wird ersichtlich, dass die Massentierhaltung zum Treibhauseffekt beiträgt. Seit einigen Jahren suchen Wissenschaftler nach einer Möglichkeit, den Methangasausstoß bei Rindern zu reduzieren. Erste Erfolge erzielte man, indem man dem Futter der Rinder bestimmte Substanzen (z. B. Oregano oder Knoblauch) in Form von Pillen beigeben hat.

Bild

Siemens Stiftung

Leuchtmittel im Vergleich

Grafik:Glühlampe, Energiesparlampe und LED-Lampe werden nach Kosten und Wirkungsgrad verglichen.Die tabellarische Gegenüberstellung zeigt: Auch wenn Energiespar- und LED-Lampen teurer in der Anschaffung sind, sind sie in den Gesamtkosten für 10.000 Stunden erheblich günstiger. Außerdem liegt ihr Wirkungsgrad erheblich über dem einer Glühlampe.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Parabolrinnenkraftwerk

Foto: Parabolrinnen-Kraftwerk in Lockhart bei Harper Lake in Kalifornien (Mojave Solar Project)Diese Sonnenkraftwerke arbeiten mit langen Zeilen (z. B. 112 m) von Parabolspiegeln, in deren Brennpunkt ein Rohr mit Arbeitsmittel verläuft. Die Ausrichtung der Spiegel wird dem Sonnenstand automatisch nachgeführt. Die Strahlung wird durch die Bündelung im Spiegel 80-fach verstärkt und ein Öl im Absorber wird auf rund 400 °C erhitzt. Das heiße Öl fließt zum Kraftwerkshaus, wo es über einen Wärmeaustauscher Wasserdampf erzeugt, der eine Dampfturbine mit Generator antreibt. (Alternativ werden Kraftwerke mit flüssiger Salzschmelze im Absorberrohr angedacht.) In den USA arbeitet seit 20 Jahren ein Parabolrinnenpark aus neun Kraftwerken mit einer Gesamtleistung von 350 MW. In Spanien erreichen Andasol 1, 2 und 3 zusammen 150 MW. Dank integriertem Wärmespeicher aus Salzschmelze liefert Andasol auch ohne Sonne über 7 h volle Leistung. In Marokko entsteht derzeit die weltweit größte Anlage mit 580 MW.


Dieses Material ist Teil einer Sammlung