Bild

Siemens Stiftung

Leuchtmittel im Vergleich

Grafik:Glühlampe, Energiesparlampe und LED-Lampe werden nach Kosten und Wirkungsgrad verglichen.Die tabellarische Gegenüberstellung zeigt: Auch wenn Energiespar- und LED-Lampen teurer in der Anschaffung sind, sind sie in den Gesamtkosten für 10.000 Stunden erheblich günstiger. Außerdem liegt ihr Wirkungsgrad erheblich über dem einer Glühlampe.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Geothermieanlage

Foto: Die abgebildete Geothermieanlage deckt den gesamten Heizungsbedarf des Wohn- und Gewerbegebiets im Stadtteil München Freiham ab.Aus einer Förderbohrung wird 90 °C heißes Tiefenwasser gepumpt. Die Wärme dieses aus 2.500 m Tiefe geförderten Tiefenwassers wird über einen Wärmeaustauscher ins Fernwärmenetz übertragen. Sodann wird das abgekühlte Wasser über eine Injektionsbohrung zurück in die Tiefe gepumpt. Die dadurch erreichte Einsparung fossiler Brennstoffe entspricht einer Emission von 22.500 t Kohlendioxid jährlich. Die abgebildete Anlage enthält außer den Pumpen und dem Wärmeaustauscher noch zusätzlich einen großen Gasheizkessel. Dieser dient zur Notversorgung, falls die Pumpen durch Wartung oder Reparatur einmal ausfallen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Erdwärme

Übersichtsgrafik: Gegenüberstellung tiefer und oberflächennaher Geothermie anhand ausgewählter Beispiele.Erdwärme oder auch Geothermie bezeichnet das thermische Energiepotenzial im Erdreich. Je nach Tiefe der Erdschichten entsteht die Erdwärme ausschließlich durch Restwärme aus der Erdentstehungszeit und durch radioaktive Zerfallsprozesse (tiefe Geothermie) oder aus der Sonneneinstrahlung (oberflächennahe Geothermie). Die tiefe Geothermie tritt an die Erdoberfläche, z. B. in Form von Thermalquellen und Vulkanen. Bei der oberflächennahen Geothermie zeigt sich ab ca. 15 m Erdtiefe eine jahreszeitenunabhängige Durchschnittstemperatur von 8 bis 12 °C, die sich fast ausschließlich aus der Sonneneinstrahlung speist. Erst ab ca. 100 m Tiefe überwiegt der Wärmezufluss aus dem Erdinneren. Sowohl die oberflächennahe als auch die tiefe Geothermie können mit unterschiedlichen Technologien zur Strom- und Wärmeerzeugung genutzt werden.Übrigens: Neuschnee im Frühjahr schmilzt auf warmer Erde sofort, wenn er direkt mit dieser in Berührung kommt. Fällt der Schnee jedoch auf Gras, bleibt er länger liegen, da das Gras als Isolationsschicht wirkt.Hinweise und Ideen:Das Medium kann einen Überblick über den Energieträger Erdwärme geben. Eine Verknüpfung mit Erdkunde liegt nahe. Mögliche Fragestellung: Welche Regionen bieten sich für die Nutzung tiefer und/oder oberflächennaher Geothermie an (z. B. Vorkommen heißer Thermalquellen in Island)? Ausführliche Informationen findet man im Leitfaden “Regenerative Energien” auf dem Medienportal der Siemens Stiftung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Wind

Foto: Die Wirkung des Energieträgers Wind dargestellt durch einen Windsack.Wind ist die Bewegung von Luftmassen als Folge von Temperaturschwankungen und den daraus resultierenden Druckunterschieden in der Atmosphäre. Sonneneinstrahlung und Erdrotation sind dafür die treibenden Mechanismen. Wind tritt in unterschiedlicher Stärke von der Böe bis zum Wirbelsturm auf. Die Nutzung der Windenergie geht weit in die Menschheitsgeschichte zurück - in Form von Segelschiffen (3.500 v. Chr.) und Windmühlen (1.700 v. Chr.). Wind gehört heute zu den am effektivsten genutzten regenerativen und kohlendioxidfreien Energieträgern. Das Foto zeigt einen Windsack, der zur Windmessung an Land genutzt wird.Hinweise und Ideen:Das Foto eignet sich dazu, dem regenerativen Energieträger Wind ein optisches Erscheinungsbild zu geben, und ist als Einstieg oder Veranschaulichung einsetzbar. Informationen zur Nutzung der Windkraft sind z. B. im Infomodul “So funktioniert ein Windkraftwerk” und in der Grafik “Windrad - Querschnitt” enthalten.


Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).


Bild

Logo creative commons

Siemens Stiftung

Parabolrinnenkraftwerk

Foto: Parabolrinnen-Kraftwerk in Lockhart bei Harper Lake in Kalifornien (Mojave Solar Project)Diese Sonnenkraftwerke arbeiten mit langen Zeilen (z. B. 112 m) von Parabolspiegeln, in deren Brennpunkt ein Rohr mit Arbeitsmittel verläuft. Die Ausrichtung der Spiegel wird dem Sonnenstand automatisch nachgeführt. Die Strahlung wird durch die Bündelung im Spiegel 80-fach verstärkt und ein Öl im Absorber wird auf rund 400 °C erhitzt. Das heiße Öl fließt zum Kraftwerkshaus, wo es über einen Wärmeaustauscher Wasserdampf erzeugt, der eine Dampfturbine mit Generator antreibt. (Alternativ werden Kraftwerke mit flüssiger Salzschmelze im Absorberrohr angedacht.) In den USA arbeitet seit 20 Jahren ein Parabolrinnenpark aus neun Kraftwerken mit einer Gesamtleistung von 350 MW. In Spanien erreichen Andasol 1, 2 und 3 zusammen 150 MW. Dank integriertem Wärmespeicher aus Salzschmelze liefert Andasol auch ohne Sonne über 7 h volle Leistung. In Marokko entsteht derzeit die weltweit größte Anlage mit 580 MW.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Brennstoffzelle für Experimente

Foto:Brennstoffzelle aus einem ExperimentierkastenSolche einfachen Brennstoffzellen werden gerne für Experimente im Unterricht verwendet. Durch das transparente Gehäuse sind die Platinelektroden gut erkennbar.


Bild

Siemens Stiftung

Solarstromanlage auf Freifläche (“Solarfeld”, “Solarpark”)

Foto: Photovoltaikanlage auf einer Wiese (“Freiflächenanlage”).Hinweise und Ideen:Das Foto eignet sich zur Veranschaulichung und beinhaltet thematisch viele Anknüpfungspunkte. So können davon ausgehend sowohl der Energieträger Sonne als auch die damit verbundenen technologischen Entwicklungen (z. B. Photovoltaik) behandelt werden. Zudem können wirtschaftliche und gesellschaftliche Aspekte der Energieversorgung zur Sprache kommen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).