Bild

Siemens Stiftung

Solarthermische Kraftwerke - Prinzip

Grafik, beschriftet:Das physikalische Prinzip eines Parabolrinnenkraftwerks und einer Dish-Stirling-Anlage im Vergleich.Zunehmend werden Kraftwerke zur Stromerzeugung aus Sonnenwärme gebaut. Die Grafik zeigt zwei Bauweisen, die sich durchgesetzt haben.Parabolrinnenkraftwerk: Ein großes Sonnenkraftwerk, dessen Leistung vergleichbar mit Kohlekraftwerken ist. Lange Zeilen von Parabolspiegeln haben in ihrem Brennpunkt ein Absorberrohr, das mit einem Arbeitsmittel gefüllt ist. Über einen Wärmeaustauscher erzeugt das heiße Arbeitsmittel Dampf, mit dem sich dann große Dampfturbinen und Generatoren betreiben lassen.Dish-Stirling-Anlage: Ein eher kleines Kraftwerk, dessen zentrales Element ein großer runder Hohlspiegel (Dish, Teller) ist. In seinem Brennpunkt befindet sich der Arbeitszylinder eines Stirlingmotors, der einen Generator antreibt. Das gegenwärtig leistungsfähigste Kraftwerk dieser Art ist der Euro-Dish-Stirling-Typ. Hinweise und Ideen:Zu den solarthermischen Kraftwerken zählen auch das “Aufwindkraftwerk”, der “Sonnenofen” und das “Turmkraftwerk”. Wie sind diese Kraftwerke aufgebaut und wie funktionieren sie? In welchen Gegenden auf der Erde gibt es solarthermische Kraftwerke und von welchem Typ sind sie? Weiterführende Informationen zum solarthermischen Kraftwerk findet man im Leitfaden “Regenerative Energien”.


Bild

Logo creative commons

Siemens Stiftung

Parabolrinnenkraftwerk

Foto: Parabolrinnen-Kraftwerk in Lockhart bei Harper Lake in Kalifornien (Mojave Solar Project)Diese Sonnenkraftwerke arbeiten mit langen Zeilen (z. B. 112 m) von Parabolspiegeln, in deren Brennpunkt ein Rohr mit Arbeitsmittel verläuft. Die Ausrichtung der Spiegel wird dem Sonnenstand automatisch nachgeführt. Die Strahlung wird durch die Bündelung im Spiegel 80-fach verstärkt und ein Öl im Absorber wird auf rund 400 °C erhitzt. Das heiße Öl fließt zum Kraftwerkshaus, wo es über einen Wärmeaustauscher Wasserdampf erzeugt, der eine Dampfturbine mit Generator antreibt. (Alternativ werden Kraftwerke mit flüssiger Salzschmelze im Absorberrohr angedacht.) In den USA arbeitet seit 20 Jahren ein Parabolrinnenpark aus neun Kraftwerken mit einer Gesamtleistung von 350 MW. In Spanien erreichen Andasol 1, 2 und 3 zusammen 150 MW. Dank integriertem Wärmespeicher aus Salzschmelze liefert Andasol auch ohne Sonne über 7 h volle Leistung. In Marokko entsteht derzeit die weltweit größte Anlage mit 580 MW.


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Dish-Stirling-Anlage

Foto:Ein sog. Euro-Dish-Stirling-Kraftwerk in Südfrankreich. Es hat bei 17 m Durchmesser eine Leistung von 50 kW.Kleinere Solarkraftwerke besitzen einen runden Hohlspiegel (“dish” = Teller), in dessen Brennpunkt sich der Arbeitszylinder eines Stirlingmotors befindet. Auf die Welle eines Stirlingmotors ist direkt der Generator aufgesetzt. (Alternative: Verwendet man einen Permanentmagneten als Kolben, kann die Stromerzeugung als Lineargenerator direkt in den Stirlingmotor integriert werden). Dish-Sterling-Kraftwerke werden z. B. in sonnenreichen Gegenden ohne Stromnetz zum teilweisen Ersatz von Dieselgeneratoren eingesetzt. Bei entsprechend großen Batteriespeichern kann auf Dieselgeneratoren verzichtet werden.Quelle des Fotos: https://commons.wikimedia.org/w/index.php?curid=362869


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Reflexion

Schemagrafik:Das Phänomen der Reflexion wird mit dem Strahlencharakter des Lichts erklärt.Der Strahlencharakter des Lichts wird am Phänomen der Reflexion deutlich: Licht wird an spiegelnden Flächen gemäß dem Reflexionsgesetz reflektiert.1. Der einfallende Strahl und der reflektierte Strahl liegen in einer Ebene.2. Der Einfallswinkel ist genauso groß wie der Ausfallswinkel.Hinweise und Ideen:Gerade im Bereich Reflexion (inklusive zum Thema Spiegel) bieten sich Experimente an, die die Schüler mit einfachen Mitteln selbst durchführen können.

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Diagramm Licht Optik

Sprachen

Deutsch

Bild

Siemens Stiftung

Brechung

Grafik, beschriftet:Das Wellenfrontmodell der Brechung an einer Grenzschicht macht die Ursache der Änderung der Ausbreitungsrichtung klar.Beim Übertritt von Wellen aus einem Medium in ein anderes ändert sich die Ausbreitungsgeschwindigkeit der Welle. Als Folge haben die Wellennormalen der einfallenden und der gebrochenen Wellen verschiedene Richtungen. Bei Lichtwellen ist die Änderung des Brechnungsindexes an der Grenzfläche die Ursache, bei Schallwellen die Änderung der Dichte. Die Grafik zeigt den Fall, dass die Ausbreitungsgeschwindigkeit beim Übergang vom ersten ins zweite Medium langsamer wird: Die Welle wird zum Lot der Grenzfläche hin gebrochen. Eine Erklärung dieses Verhaltens liefert das Huygen’sche Prinzip: Jeder Punkt einer Wellenfront ist Ausgangspunkt einer neuen Welle, einer sog. “Elementarwelle”. Die Einhüllende der Elementarwelle ergibt die neue Wellenfront. Hinweise und Ideen:Auch bei Schallwellen tritt Brechung an Grenzflächen auf (z. B. in der Atmosphäre beim Übergang von warmen in kalte Luftschichten).Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Symmetrie ist überall

Fotocollage: Symmetrische Gegenstände, wie man sie zuhause und draußen überall sehen kann.Symmetrie ist ein Alltagsphänomen, das, wenn die Schülerinnen und Schüler nur genauer hinsehen, in vielen Dingen ihrer Lebenswelt erkannt werden kann. Auch als Anregung für eigene Erkundungen und Suche nach Symmetrie. Hinweise und Ideen: Der abgebildete Hampelmann ist nicht rein achsensymmetrisch, könnte aber auf den ersten Blick von den Schülerinnen und Schülern so eingeschätzt werden. Das Bild kann als Impuls genutzt werden, um die Schülerinnen und Schüler zu eigenen, achsensymmetrischen Hampelmann-Konstruktionen anzuregen.

Bild

Siemens Stiftung

Symmetrie durch Spiegeln

Foto: Ein gezeichneter Schmetterling und der Buchstabe A werden durch das Spiegelbild achsensymmetrisch ergänzt.Diese Abbildung greift das Titelbild dieses Interaktiven Tafelbilds “Symmetrie” für die Grundschule auf. Es zeigt, wie durch Spiegelung an einer Symmetrieachse ein Bildmotiv achsensymmetrisch ergänzt, bzw. dupliziert wird.

Bild

Siemens Stiftung

Spiegel

Foto:Spiegelbild eines Stifts.Spiegel bestehen in der Regel aus einer Glasscheibe, die auf der Rückseite eine dünne Schicht Aluminium hat. Das eigentliche Spiegelbild entsteht auf dieser Aluminiumschicht. Das Glas dient dazu, diese Schicht vor Kratzern zu schützen. Je glatter die Spiegeloberfläche ist, desto schärfer und exakter ist auch das entstehende Spiegelbild.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Sachkunde

Medientypen

Bild

Lernalter

6-10

Schlüsselwörter

Licht Optik

Sprachen

Deutsch

Bild

Siemens Stiftung

Symmetrie

Grafik:Drei achsensymmetrische Objekte (stilisiertes Gesicht, Schmetterling, Buchstabe “A”) und ein unsymmetrisches Objekt (Berg) werden gezeigt.Hinweise und Ideen:Als Impulsbild, um die Vorerfahrungen der Schülerinnen und Schüler zu aktivieren und zum Thema Symmetrie hinzuführen. Was haben diese Objekte (mit einer Ausnahme) gemeinsam?

Bild

Siemens Stiftung

Schallstreuung

Grafik:Schallstreuung. Eine von mehreren Verhaltensweisen von Schallwellen, wenn sie auf ein Hindernis treffen.Unter Streuung versteht man eine Reflexion an kleinen Strukturen ohne ausgeprägte Vorzugsrichtung. Sie ist stark frequenzabhängig. Hinweise und Ideen:Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Optik Schall Welle (Physik)

Sprachen

Deutsch