Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Weltweiter Verbrauch fossiler Energieträger

Diagramm und Tabelle:Der weltweite Verbrauch fossiler Energieträger und deren Einsatz bei der Strom- und Wärmeerzeugung in Zahlen.Das Tortendiagramm gibt den prozentualen Anteil der fossilen Energieträger (Kohle, Erdöl und Erdgas) an der weltweiten Primärenergieversorgung wieder. Eine Aufschlüsselung nach Verteilung dieser fossilen Energieträger auf die Strom- und Wärmeerzeugung, aber auch auf andere Bereiche wie z. B. die Industrie, zeigt die Tabelle. Hinweise und Ideen:Diagramm und Tabelle geben den Schülern und Schülerinnen einen Überblick, wozu und in welchem Umfang fossile Energieträger im Jahr 2012 verwendet wurden. Überlegungen zur Endlichkeit dieser Energieträger und zum Umstieg bzw. zur Ausweitung der Nutzung regenerativer Energieträger lassen sich anschließen. Weitere Informationen findet man in der Sachinformation “Energieträger im Überblick” und der Grafik “Wie lange reichen unsere Energieträger?”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).


Bild

Siemens Stiftung

Zukünftiger weltweiter Primärenergiebedarf

%iagramm:Prognostizierte Entwicklung des Primärenergiebedarfs weltweit, differenziert nach Industrieländern und noch nicht voll entwickelten Ländern.Das Diagramm beschreibt den weltweiten jährlichen Bedarf an Primärenergieträgern im Zeitraum von 2000 bis 2150 (Abschätzung aus dem Jahr 2002). Der Primärenergiebedarf wird in der Einheit 1013 kWh/Jahr angegeben und berücksichtigt die Entwicklung der Bevölkerungszahlen und des Bruttosozialprodukts pro Kopf bei zunehmender Industrialisierung. Das Diagramm zeigt deutlich, dass das Wachstum nicht unbegrenzt ist.Übrigens: In Deutschland ist der Primärenergieverbrauch seit 1990 nahezu konstant, obwohl sich das Bruttoinlandsprodukt seit dieser Zeit um ca. 27 % erhöht hat.Hinweise und Ideen:Ausgehend von dieser Prognose können Überlegungen angestellt werden, welche Folgen sich daraus für fossile Energieressourcen und regenerative Energieträger ergeben könnten. Wie sehen die Prognosen für die Entwicklung der Weltbevölkerung und des Bruttosozialprodukts pro Kopf aus? Informationen hierzu findet man in der Studie von Prof. D. Pelte der Universität Heidelberg%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Temperaturabhängigkeit der Dichte

Diagramm: Dichte-Temperatur-Verlauf bei Wasser im Vergleich zu Benzol; Gegenüberstellung veranschaulicht die Dichteanomalie des Wassers.Bei den meisten Stoffen gilt als kontinuierlicher Verlauf: je höher die Temperatur, desto niedriger die Dichte der Substanz. Bei Phasenübergängen (Gas -> Flüssigkeit -> Feststoff) ändert sich die Dichte um diesen Temperaturbereich drastisch. Bei Wasser tritt jedoch ein Dichtesprung um den Gefrierpunkt auf. Die Dichte nimmt nicht zu, sondern entgegen den Erwartungen ab. Im Gegensatz dazu zeigt die Grafik den Dichte-Temperatur-Verlauf bei “normalen” Stoffen (hier Benzol). Hinweise und Ideen:Woher könnte dieses Verhalten kommen?Welche praktische Bedeutung hat diese Anomalie des Wassers?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen (Mindmap)

Mindmap:Es werden die unterschiedlichen Facetten des Themas Energiesparen visualisiert. Ausgehend von der Frage warum Energiesparen notwendig ist, wird den Fragen nachgegangen, wo, wie und an welchen Stellen Energie gespart werden kann.Hinweise und Ideen:Die Mindmap eignet sich als Einstieg in das Thema. Einzelne Punkte können als Referatsthemen vergeben werden, beispielsweise “Was tut der Staat, um Energie zu sparen bzw. das Energiesparen voranzutreiben?”


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Wofür verbraucht der Privathaushalt Energie?

%iagramm:Prozentualer Energieverbrauch deutscher und britischer Privathaushalte nach verschiedenen Anwendungsbereichen.Die Balken zeigen, welcher Anteil am Energieverbrauch in privaten Haushalten für Raumwärme, Warmwasser, Kochen sowie Beleuchtung und Elektrogeräte verwendet wird. Beispielhaft werden die Daten für Deutschland und Großbritannien aus dem Jahr 2012 miteinander verglichen. Zusätzlich ist der gesamte Energieverbrauch aller Haushalte in Deutschland und Großbritannien für das Jahr 2013 angegeben. Zusätzlich wird noch der Gesamtenergieverbrauch aller afrikanischen Länder südlich der Sahara angegeben.Wie aus dem Diagramm ersichtlich ist, wird ein Großteil der Energie im Haushalt für Heizen/Warmwasser verwendet. Aber auch beim Betrieb von Kühlschränken wird viel Energie verbraucht. Durch sparsamen Umgang und bewusstes Handeln könnte ein Teil dieser Energie eingespart werden.Hinweise und Ideen:Betrachtet man den Energieverbrauch der einzelnen Bereiche in der Gesamtheit, so wird ersichtlich, dass die Heizenergie mit über 60 % in beiden Ländern den größten Anteil hat. Daraus lässt sich ableiten, dass gerade beim Heizen ein enormes Energiesparpotenzial besteht. Wie kann das umgesetzt werden? Einige Beispiele sind: • der Bau energiesparender Gebäude durch Beachtung von Tageslichteinfluss und ausreichender Dämmung• der Kauf von energieeffizienten Haushaltsgeräten mit Energielabel A, A+ und A++.Im Vergleich zu den beiden europäischen Staaten ist der Energieverbrauch in Afrika gering. Dies liegt u. a. daran, dass in vielen Gebieten nur wenige Menschen überhaupt Zugang zur Energieversorgung haben.Hinweise und Ideen:Welche Energiesparmaßnahmen können die Schüler selbst ergreifen? Konkrete Energiespartipps findet man auch im Medium “Wie kann man im Haushalt Energie sparen?”%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).


Dieses Material ist Teil einer Sammlung