Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Bild

Siemens Stiftung

Energieträger Erdwärme

Übersichtsgrafik: Gegenüberstellung tiefer und oberflächennaher Geothermie anhand ausgewählter Beispiele.Erdwärme oder auch Geothermie bezeichnet das thermische Energiepotenzial im Erdreich. Je nach Tiefe der Erdschichten entsteht die Erdwärme ausschließlich durch Restwärme aus der Erdentstehungszeit und durch radioaktive Zerfallsprozesse (tiefe Geothermie) oder aus der Sonneneinstrahlung (oberflächennahe Geothermie). Die tiefe Geothermie tritt an die Erdoberfläche, z. B. in Form von Thermalquellen und Vulkanen. Bei der oberflächennahen Geothermie zeigt sich ab ca. 15 m Erdtiefe eine jahreszeitenunabhängige Durchschnittstemperatur von 8 bis 12 °C, die sich fast ausschließlich aus der Sonneneinstrahlung speist. Erst ab ca. 100 m Tiefe überwiegt der Wärmezufluss aus dem Erdinneren. Sowohl die oberflächennahe als auch die tiefe Geothermie können mit unterschiedlichen Technologien zur Strom- und Wärmeerzeugung genutzt werden.Übrigens: Neuschnee im Frühjahr schmilzt auf warmer Erde sofort, wenn er direkt mit dieser in Berührung kommt. Fällt der Schnee jedoch auf Gras, bleibt er länger liegen, da das Gras als Isolationsschicht wirkt.Hinweise und Ideen:Das Medium kann einen Überblick über den Energieträger Erdwärme geben. Eine Verknüpfung mit Erdkunde liegt nahe. Mögliche Fragestellung: Welche Regionen bieten sich für die Nutzung tiefer und/oder oberflächennaher Geothermie an (z. B. Vorkommen heißer Thermalquellen in Island)? Ausführliche Informationen findet man im Leitfaden “Regenerative Energien” auf dem Medienportal der Siemens Stiftung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Zukünftiger weltweiter Primärenergiebedarf

%iagramm:Prognostizierte Entwicklung des Primärenergiebedarfs weltweit, differenziert nach Industrieländern und noch nicht voll entwickelten Ländern.Das Diagramm beschreibt den weltweiten jährlichen Bedarf an Primärenergieträgern im Zeitraum von 2000 bis 2150 (Abschätzung aus dem Jahr 2002). Der Primärenergiebedarf wird in der Einheit 1013 kWh/Jahr angegeben und berücksichtigt die Entwicklung der Bevölkerungszahlen und des Bruttosozialprodukts pro Kopf bei zunehmender Industrialisierung. Das Diagramm zeigt deutlich, dass das Wachstum nicht unbegrenzt ist.Übrigens: In Deutschland ist der Primärenergieverbrauch seit 1990 nahezu konstant, obwohl sich das Bruttoinlandsprodukt seit dieser Zeit um ca. 27 % erhöht hat.Hinweise und Ideen:Ausgehend von dieser Prognose können Überlegungen angestellt werden, welche Folgen sich daraus für fossile Energieressourcen und regenerative Energieträger ergeben könnten. Wie sehen die Prognosen für die Entwicklung der Weltbevölkerung und des Bruttosozialprodukts pro Kopf aus? Informationen hierzu findet man in der Studie von Prof. D. Pelte der Universität Heidelberg%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.

Bild

Siemens Stiftung

Energiequellen für elektrischen Strom

Schemagrafik:Übersicht über die Umwandlungspfade von verschiedenen Energiequellen hin zu elektrischem Strom.Um die in nuklearen, regenerativen und fossilen Energieträgern enthaltenen Energieformen für den Menschen nutzbar zu machen, müssen sie in eine andere Energieform umgewandelt werden, z. B. in elektrische Energie (“Strom”). Von den hier gezeigten Energieträgern ist bei Kernenergie, nachwachsenden und fossilen Brennstoffen sowie Geo- und Solarthermie eine direkte Umwandlung in elektrische Energie nicht möglich. Daher müssen mehrere Umwandlungsschritte hintereinandergeschaltet werden. Die beiden letzten Schritte sind die Umwandlung von thermischer in mechanische Energie in der Turbine und die Umwandlung von mechanischer in elektrische Energie im Generator.Wasser- und Windkraft können direkt einen Generator antreiben und Photovoltaik erzeugt direkt elektrische Energie. Hinweise und Ideen:Sehr gut geeignet, um das Gesetz von der Erhaltung der Energie zu erläutern. Dass Energie nicht erzeugt, sondern nur umgewandelt werden kann, ist den Schülern nicht selbstverständlich.

Bild

Siemens Stiftung

Magnetische Energie

Übersichtsgrafik:Zwei Erscheinungsformen magnetischer Energie werden gegenübergestellt: die magnetische Energie einer stromdurchflossenen Spule und die eines Elementarmagneten.Magnetische Energie ist die Energie, die in einer stromdurchflossenen Spule in Form ihres Magnetfelds gespeichert ist. Sie resultiert aus der Arbeit, die der Strom gegen die induzierte Spannung (Faraday’sches Induktionsgesetz) verrichten muss. Umgekehrt wird diese magnetische Energie wieder als Strom frei, wenn das Magnetfeld abgebaut wird. Auch in einem magnetisierten Stoff ist magnetische Energie gespeichert: Sie entspricht der Arbeit, die aufzuwenden ist, um die magnetische Dipole dieses Stoffs in einem äußeren magnetischen Feld auszurichten. In ferromagnetischen Materialien richten sich die magnetischen Dipole in kleinen Bereichen (“Weiߒsche Bezirke”) auch ohne äußeres Magnetfeld aneinander aus. Richtet man nun die Weiß'schen Bezirke durch ein äußeres Magnetfeld aus, erhält man einen Permanentmagneten. Übrigens: Erhitzt man einen Permanentmagneten, so verliert er oberhalb einer kritischen Temperatur seine Magnetisierung. Die magnetische Energie wird bei dieser sog. Curie-Temperatur als zusätzliche Wärme frei.Hinweise und Ideen:Ein einfaches Experiment zur Magnetisierung: Ein Permanentmagnet magnetisiert durch Darüberstreichen einen Eisennagel. Welche Arbeit muss außer der Reibungsarbeit dabei aufgewendet werden? Wird dabei der Permanentmagnet bzw. dessen magnetische Energie “verbraucht”?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Anteil der Energieträger am weltweiten Strommix von 2005 bis 2040

%iagramm:Das Diagramm zeigt, dass die regenerativen Energien ab ca. 2040 auch weltweit den größten Anteil an der Stromerzeugung haben werden. Es wird deutlich, dass auch in Zukunft die fossilen Energieträger, insbesondere die Kohle, und die dafür entwickelten Kraftwerkstechnologien eine zentrale Rolle bei der Energieversorgung spielen werden. Diese Rolle wird aber zunehmend kleiner.Hinweise und Ideen:In Deutschland sowie in einigen anderen Ländern soll laut Prognosen der Anteil der regenerativen Energien an der Stromerzeugung wesentlich schneller steigen als am gesamten Primärenergieverbrauch. In Deutschland z. B. soll der Anteil in 2040 bei Strom bereits über 65 % liegen. Weltweit liegen die Prognosen sowohl bei Strom als auch beim Gesamtprimärenergieverbrauch (also Strom + Verkehr + Wärmeerzeugung) allerdings gleichauf bei gut 30 %. Wie kann man diesen Unterschied erklären?Unter Verwendung der Quelle: “World Energy Outlook 2012”, International Energy Agency IEA (2012%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Thermische Energie

Diagramm:Formeln für die thermische Energie von Gasen sowie die Temperaturabhängigkeit der zugehörigen molaren Wärmekapazität bei konstantem Volumen.Die thermische oder innere Energie eines Stoffs ist die Summe der Bewegungsenergien seiner Atome bzw. Moleküle. Diese Energie ist als Temperatur messbar. Führt man dem Stoff Wärme zu, steigt die Teilchengeschwindigkeit und damit die Temperatur. Bei molekularen Gasen kann die Wärmezufuhr zusätzlich zur translatorischen Bewegung die Anregung anderer Bewegungsformen (Rotation und Schwingung) hervorrufen. Dies drückt sich im stufenförmigen Verlauf der molaren Wärmekapazität aus (Diagramm rechts). Die molare Wärmekapazität eines Stoffs gibt an, wie viel Energie man zuführen muss, um 1 mol eines Stoffs um 1 °C zu erhöhen. Für gasförmige Stoffe gilt: Falls die Gasteilchen sich nur linear bewegen (Translation), ist die Wärmemenge, die zugeführt werden muss, um das Gas um 1 °C zu erhöhen, konstant 3R/2. Im Fall molekularer Gase fangen die Moleküle ab einer bestimmten Temperatur an zu rotieren. In diesem Bereich (linearer Anstieg im Diagramm) muss man mehr Energie zuführen, um die Temperatur um 1 °C zu erhöhen, da die Energie nicht nur in die translatorische Bewegung geht, sondern auch in die Anregung der Rotation. Sind alle Teilchen in Rotation versetzt, so ist die Energie, die zugeführt werden muss, um die Temperatur um 1 °C zu erhöhen, wieder konstant 5R/2. Der Anstieg beim Übergang von Rotation nach Schwingung lässt sich analog erklären. Hinweise und Ideen:Die Übersichtsgrafik fasst das Thema Wärmeenergie am Beispiel Gase zusammen. Ausführliche Erläuterungen und Erläuterungen zur Wärme in Feststoffen findet man im Leitfaden “Was ist Energie?”.

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).