Bild

Siemens Stiftung

Baum

Foto:Eine Baumgruppe im Spätsommer. Photosynthese findet nur in den grünen Blättern statt. Hinweise und Ideen:Als Beispiel für die Umwandlung von Strahlungsenergie in chemische Energie.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).

Bild

Siemens Stiftung

Stoma der Tomatenpflanze

Foto:Blatt einer Tomatenpflanze - makroskopisch und mikroskopisch.Verdunstung ist für Pflanzen lebensnotwendig.Ihre Blätter sind von einer Hülle aus Epidermiszellen umgeben, welche durch eine Wachsschicht (Cuticula) auf der Außenseite geschützt ist und für Wasserdampf (genauso wie für Sauerstoff und CO2) schlecht durchdringbar ist. Durch Spaltöffnungen (Stomata) erfolgt der Gasaustausch nach außen. Diese Spaltöffnungen bestehen aus zwei bohnenförmigen Schließzellen, durch die das Blatt den Gasaustausch regulieren und somit auch die Verdunstungsrate im Bereich von zwei Größenordnungen steuern kann.Hinweise und Ideen:Die mikroskopische Aufnahme stammt von einem Elektronenmikroskop.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Erdwärme

Übersichtsgrafik: Gegenüberstellung tiefer und oberflächennaher Geothermie anhand ausgewählter Beispiele.Erdwärme oder auch Geothermie bezeichnet das thermische Energiepotenzial im Erdreich. Je nach Tiefe der Erdschichten entsteht die Erdwärme ausschließlich durch Restwärme aus der Erdentstehungszeit und durch radioaktive Zerfallsprozesse (tiefe Geothermie) oder aus der Sonneneinstrahlung (oberflächennahe Geothermie). Die tiefe Geothermie tritt an die Erdoberfläche, z. B. in Form von Thermalquellen und Vulkanen. Bei der oberflächennahen Geothermie zeigt sich ab ca. 15 m Erdtiefe eine jahreszeitenunabhängige Durchschnittstemperatur von 8 bis 12 °C, die sich fast ausschließlich aus der Sonneneinstrahlung speist. Erst ab ca. 100 m Tiefe überwiegt der Wärmezufluss aus dem Erdinneren. Sowohl die oberflächennahe als auch die tiefe Geothermie können mit unterschiedlichen Technologien zur Strom- und Wärmeerzeugung genutzt werden.Übrigens: Neuschnee im Frühjahr schmilzt auf warmer Erde sofort, wenn er direkt mit dieser in Berührung kommt. Fällt der Schnee jedoch auf Gras, bleibt er länger liegen, da das Gras als Isolationsschicht wirkt.Hinweise und Ideen:Das Medium kann einen Überblick über den Energieträger Erdwärme geben. Eine Verknüpfung mit Erdkunde liegt nahe. Mögliche Fragestellung: Welche Regionen bieten sich für die Nutzung tiefer und/oder oberflächennaher Geothermie an (z. B. Vorkommen heißer Thermalquellen in Island)? Ausführliche Informationen findet man im Leitfaden “Regenerative Energien” auf dem Medienportal der Siemens Stiftung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Die Sonne - unsere Hauptenergiequelle

Grafik, beschriftet:Ein Querschnitt durch die Sonne zeigt die Temperatur- und Dichteprofile in den einzelnen “Sphären”. Die Energie entsteht durch Kernfusion im Sonneninneren.Die Strahlungsenergie der Sonne ist der Motor für die lebenswichtigen Prozesse auf der Erdoberfläche. Die Energie entsteht durch Kernfusion im Sonneninneren und diffundiert nach etwa 10 Mio. Jahren an die Sonnenoberfläche (Photosphäre), die sie als Strahlung an die Erde abgibt. Die Strahlungsenergie, die letztlich auf der Erde ankommt, ist daher uralt. Das Temperaturprofil durch den Sonnenquerschnitt zeigt Temperaturabnahme vom Kern bis zur Photosphäre und Temperaturzunahme von der Photosphäre zur Korona.Hinweis: Die “Schlangenlinien” im Bild symbolisieren die auftretende Strahlung und deren Wellenlänge.Die Strahlung, die auf die Erde trifft, geht von der Photosphäre aus.Hinweise und Ideen:Unter welchen Gesichtspunkten ist die Sonne eine unerschöpfliche Energiequelle? Welche Erklärung gibt es dafür, dass die Temperatur von der Photosphäre zur Korona hin wieder ansteigt? Übrigens: Der Mechanismus der Aufheizung in der Chromosphäre ist weitgehend ungeklärt!


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Geothermieanlage

Foto: Die abgebildete Geothermieanlage deckt den gesamten Heizungsbedarf des Wohn- und Gewerbegebiets im Stadtteil München Freiham ab.Aus einer Förderbohrung wird 90 °C heißes Tiefenwasser gepumpt. Die Wärme dieses aus 2.500 m Tiefe geförderten Tiefenwassers wird über einen Wärmeaustauscher ins Fernwärmenetz übertragen. Sodann wird das abgekühlte Wasser über eine Injektionsbohrung zurück in die Tiefe gepumpt. Die dadurch erreichte Einsparung fossiler Brennstoffe entspricht einer Emission von 22.500 t Kohlendioxid jährlich. Die abgebildete Anlage enthält außer den Pumpen und dem Wärmeaustauscher noch zusätzlich einen großen Gasheizkessel. Dieser dient zur Notversorgung, falls die Pumpen durch Wartung oder Reparatur einmal ausfallen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Wind

Foto: Die Wirkung des Energieträgers Wind dargestellt durch einen Windsack.Wind ist die Bewegung von Luftmassen als Folge von Temperaturschwankungen und den daraus resultierenden Druckunterschieden in der Atmosphäre. Sonneneinstrahlung und Erdrotation sind dafür die treibenden Mechanismen. Wind tritt in unterschiedlicher Stärke von der Böe bis zum Wirbelsturm auf. Die Nutzung der Windenergie geht weit in die Menschheitsgeschichte zurück - in Form von Segelschiffen (3.500 v. Chr.) und Windmühlen (1.700 v. Chr.). Wind gehört heute zu den am effektivsten genutzten regenerativen und kohlendioxidfreien Energieträgern. Das Foto zeigt einen Windsack, der zur Windmessung an Land genutzt wird.Hinweise und Ideen:Das Foto eignet sich dazu, dem regenerativen Energieträger Wind ein optisches Erscheinungsbild zu geben, und ist als Einstieg oder Veranschaulichung einsetzbar. Informationen zur Nutzung der Windkraft sind z. B. im Infomodul “So funktioniert ein Windkraftwerk” und in der Grafik “Windrad - Querschnitt” enthalten.


Bild

Siemens Stiftung

Abfälle und Emissionen beim Betrieb von Kraftwerken

Tabelle:Abfälle und Emissionen beim Betrieb von Kraftwerken nach Energieträgern aufgeschlüsselt.Die Tabelle gilt nur für die Kraftwerksanlagen selbst. Davorliegende Prozesse müssen extra betrachtet werden. Aufgeführt werden die prinzipiell möglichen Belastungen, unabhängig davon, wie weit sie durch technische Gegenmaßnahmen kompensiert werden. Die Punkte kennzeichnen die Belastung. Die Anzahl der Punkte bringt den Grad der Belastung im Vergleich der Energieträger untereinander zum Ausdruck, so dass sich innerhalb einer Zeile die Priorisierung der Energieträger nach Belastung ablesen lässt. Punkte in Klammern deuten auf Unterschiede für stark unterschiedliche Anlagen hin. Nicht alle Emissionen sind gleich Abfall. Bei der Entschwefelung entsteht Gips als Handelsware. Auch Asche und Schlacke können weitergenutzt werden.Hinweise und Ideen:Detailinformationen zum Thema findet man in der Sachinformation “Abfälle und Emissionen”, die u. a. technische Gegenmaßnahmen zur Kompensation von möglichen Belastungen aufzeigt.


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Dish-Stirling-Anlage

Foto:Ein sog. Euro-Dish-Stirling-Kraftwerk in Südfrankreich. Es hat bei 17 m Durchmesser eine Leistung von 50 kW.Kleinere Solarkraftwerke besitzen einen runden Hohlspiegel (“dish” = Teller), in dessen Brennpunkt sich der Arbeitszylinder eines Stirlingmotors befindet. Auf die Welle eines Stirlingmotors ist direkt der Generator aufgesetzt. (Alternative: Verwendet man einen Permanentmagneten als Kolben, kann die Stromerzeugung als Lineargenerator direkt in den Stirlingmotor integriert werden). Dish-Sterling-Kraftwerke werden z. B. in sonnenreichen Gegenden ohne Stromnetz zum teilweisen Ersatz von Dieselgeneratoren eingesetzt. Bei entsprechend großen Batteriespeichern kann auf Dieselgeneratoren verzichtet werden.Quelle des Fotos: https://commons.wikimedia.org/w/index.php?curid=362869


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Wellenkraftwerk

Grafik, beschriftet:Schnitt durch ein Wellenkraftwerk mit Wells-Turbine.In einem Wellenkraftwerk wird die kinetische Energie der Meereswellen in elektrische Energie umgewandelt. Das Wellenkraftwerk z. B. arbeitet nach dem Prinzip einer oszillierenden Wassersäule: Ein trichterförmiges Dach deckt die Wasseroberfläche ab. Darin steigen die Wellen auf und ab, wobei die eingeschlossene Luft komprimiert und dekomprimiert wird. Die in dem Druckunterschied gespeicherte Energie wird über eine sog. Wells-Turbine und einen Generator in Strom umgewandelt. Das Besondere an der Wells-Turbine ist, dass - wenn sie einmal in Bewegung ist - sie die Drehrichtung beibehält, egal aus welcher Richtung sie durchströmt wird. Ein Wellenkraftwerk in Schottland versorgt bereits 50 Haushalte mit elektrischer Energie. Experten schätzen das nutzbare Energiepotenzial der Wellenkraft auf ein Terawatt - das entspricht etwa der Leistung von rund 1.400 konventionellen Kraftwerksblöcken. Das Kosten-Nutzen-Verhältnis ist allerdings relativ schlecht, es wurden daher seit 2011 weltweit kaum weitere Wellenkraftwerke dieser Art gebaut. Hinweise und Ideen:Worin unterscheidet sich ein Wellenkraftwerk von einem konventionellen Wasserkraftwerk? Wie unterscheiden sich die verwendeten Turbinen in Aufbau und Funktion? Wie kommt es physikalisch zustande, dass sich die Wells-Turbine immer in dieselbe Richtung dreht? Wo auf der Welt gibt es optimale Bedingungen für Wellenkraftwerke? Wie funktioniert der modernste Typ von Meereskraftwerken nach dem “Seaflow” Prinzip?