Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Power to Gas

%rafik, beschriftet:Durch die Umwandlung von überschüssigem Wind- und Solarstrom in Wasserstoff oder sogar Methan (Power to Gas) kann das bestehende Erdgasnetz zur Verteilung und Speicherung genutzt werden. Überschüssiger Strom kann zur Elektrolyse (elektrochemische Zersetzung) von Wasser (H2O) zu Wasserstoffgas (H2) und Sauerstoffgas (O2) genutzt werden. Das Wasserstoffgas wird dann unter Druck oder verflüssigt in Tanks gelagert. Bei Strombedarf wird der Wasserstoff durch Verbrennung über Brennstoffzellen, Gasturbinen, Diesel- oder Stirlingmotoren wieder zu Strom zurückgewandelt. Alternativ kann Wasserstoffgas auch bis zu ca. 5 % bis 10 % ins Erdgasnetz eingespeist werden. Wächst der Anteil an regenerativem Strom, wird aus H2 und CO2 durch mehrstufige katalytische Reaktionen Methan (CH4 = “Erdgas”) gewonnen und ins Gasnetz eingespeist. Die dafür nötige Chemie und Technologie ist altbewährt, wurde doch bereits in Deutschland im 2. Weltkrieg auf ähnliche Weise synthetisches Benzin hergestellt. Mit dem Erdgasnetz und den bereits in großem Maßstab vorhandenen Erdgasspeichern (bis zu 4 Monaten Kapazität) besteht bereits eine sehr leistungsfähige und flächendeckende Verteilungs- und Speicherinfrastruktur. Auch die bereits vorhandenen Gasturbinenkraftwerke könnten nun rein regenerativ weiter betrieben werden. Die Wasserstoff- bzw. Methanerzeugung und die Stromerzeugung durch Gasturbinen können an beliebigen Stellen im Stromnetz erfolgen. D. h. auch das Stromnetz muss nicht so stark ausgebaut werden%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Brennstoffzelle für Experimente

Foto:Brennstoffzelle aus einem ExperimentierkastenSolche einfachen Brennstoffzellen werden gerne für Experimente im Unterricht verwendet. Durch das transparente Gehäuse sind die Platinelektroden gut erkennbar.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Biomasse Brennholz

Foto: Geschichtete HolzscheiteBiomasse, vor allem Holz, ist eine der ältesten vom Menschen genutzten Energiequellen. Die Energie “gewinnt” man daraus durch Verbrennung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Biomasse

Diagramm:Überblick über die wichtigsten Vertreter der Biomasse und ihre Verwendung als primäre und sekundäre Energieträger.Biomasse ist eine der ältesten vom Menschen genutzten Energiequellen, v. a. in der Form von Holz. Die Energie “gewinnt” man daraus durch Verbrennung. Neben Holz können auch grüne Pflanzen (z. B. Chinaschilf) und getrockneter Dung verbrannt werden. Angesichts der Verknappung von Erdöl wird Biomasse vermehrt zur Gewinnung von Kraftstoffen eingesetzt. Das Diagramm zeigt, welche chemischen Verfahren hierbei zum Einsatz kommen und welche Biokraftstoffe dabei entstehen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiequellen für elektrischen Strom

Schemagrafik:Übersicht über die Umwandlungspfade von verschiedenen Energiequellen hin zu elektrischem Strom.Um die in nuklearen, regenerativen und fossilen Energieträgern enthaltenen Energieformen für den Menschen nutzbar zu machen, müssen sie in eine andere Energieform umgewandelt werden, z. B. in elektrische Energie (“Strom”). Von den hier gezeigten Energieträgern ist bei Kernenergie, nachwachsenden und fossilen Brennstoffen sowie Geo- und Solarthermie eine direkte Umwandlung in elektrische Energie nicht möglich. Daher müssen mehrere Umwandlungsschritte hintereinandergeschaltet werden. Die beiden letzten Schritte sind die Umwandlung von thermischer in mechanische Energie in der Turbine und die Umwandlung von mechanischer in elektrische Energie im Generator.Wasser- und Windkraft können direkt einen Generator antreiben und Photovoltaik erzeugt direkt elektrische Energie. Hinweise und Ideen:Sehr gut geeignet, um das Gesetz von der Erhaltung der Energie zu erläutern. Dass Energie nicht erzeugt, sondern nur umgewandelt werden kann, ist den Schülern nicht selbstverständlich.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Pkw-Brennstoffzelle

Foto:Abgebildet ist ein sog. Brennstoffzellen-Stack für Pkws. Die Abmessungen betragen bei ca. 40 l Volumen ca. 1,0 m x 0,8 m x 0,35 m.Eine einzelne Wasserstoff-Sauerstoff-Brennstoffzelle liefert ca. 1,23 Volt. Um brauchbare Spannungen und Leistungen von ca. 40 Volt bzw. ca. 50 kW zu erreichen, müssen also viele dieser einzelnen Zellen in serieller und paralleler Schaltung zusammengeschlossen werden (“Stack”). Die Zukunft des Brennstoffzellen-Pkws ist ungewiss, da Brennstoffzelle und Wasserstofftank ziemlich teuer sind. Im Vergleich dazu fallen die Preise für die Batterien der reinen E-Pkws derzeit relativ schnell.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Chemische Energie

Diagramm: Chemische Energie als Bindungsenergie zwischen Atomen in der Darstellung als Potenzialkurve.Sowohl in der Bindung von Atomen und Molekülen als auch in der Möglichkeit (Potenzial) zur chemischen Bindung steckt chemische Energie. Diese kann bei der Bildung oder beim Zerfall der Bindungen in Form von Wärme frei werden. Diese “Reaktionswärme” wird auch als Reaktionsenthalpie (H) bezeichnet. Wird Wärme frei (dH < 0), so spricht man von einer exothermen Reaktion, wird Wärme verbraucht (dH > 0) von einer endothermen. Jedes Gemisch von Ausgangsstoffen, das zu Endstoffen reagieren kann, ist also als ein Potenzial an chemischer Energie aufzufassen. Mikroskopisch steckt diese chemische Energie in den Bindungen zwischen einzelnen Atomen, wie es anhand der Potenzialkurve illustriert wird. Hinweise und Ideen:Chemische Energie ist eine Energieform, die sich gut speichern lässt - sei es im menschlichen Körper oder in Batterien und Akkus. Ein weiteres Beispiel ist Wasserstoff als chemischer Energiespeicher für regenerative Energien.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Alkali-Batterie

Foto:Im Alltag ist die Alkali-Batterie einer der wichtigsten elektrochemischen Energiespeicher. Sie ist eine galvanische Zelle, bestehend aus einer Zink-Anode, einer Mangandioxid-Kathode und Kalilauge als Elektrolyt.Hinweise und Ideen:Als Beispiel für die Umwandlung von chemischer in elektrische Energie.


Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).


Dieses Material ist Teil einer Sammlung