Bild

Siemens Stiftung

Biomasse Brennholz

Foto: Geschichtete HolzscheiteBiomasse, vor allem Holz, ist eine der ältesten vom Menschen genutzten Energiequellen. Die Energie “gewinnt” man daraus durch Verbrennung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Biomasse

Diagramm:Überblick über die wichtigsten Vertreter der Biomasse und ihre Verwendung als primäre und sekundäre Energieträger.Biomasse ist eine der ältesten vom Menschen genutzten Energiequellen, v. a. in der Form von Holz. Die Energie “gewinnt” man daraus durch Verbrennung. Neben Holz können auch grüne Pflanzen (z. B. Chinaschilf) und getrockneter Dung verbrannt werden. Angesichts der Verknappung von Erdöl wird Biomasse vermehrt zur Gewinnung von Kraftstoffen eingesetzt. Das Diagramm zeigt, welche chemischen Verfahren hierbei zum Einsatz kommen und welche Biokraftstoffe dabei entstehen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Vom Wasserrad zur Turbine (GS)

Fotocollage:
Fotos von einem Wasserrad sowie drei verschiedenen Turbinenarten.

Schon früh setzte man Wasserräder ein, um die Energie von Wasser zu nutzen, z. B. zum Antreiben eines Mühlrads. Die Turbinen, die in Wasserkraftwerken eingesetzt werden, sind eine Weiterentwicklung des klassischen Wasserrads, um Generatoren für die Stromerzeugung anzutreiben. Diese Turbinen heißen nach ihren Erfindern: Pelton, Kaplan und Francis.

Bild

Siemens Stiftung

Energieträger Wasser

Übersichtsgrafik: Der Energieträger Wasser wird in vier unterschiedlichen Erscheinungsformen dargestellt.Wasser ist ein umweltfreundlicher, regenerativer Energieträger. Es führt Energie in Form von Lage- und Bewegungsenergie (Wellen, Fließwasser und Gezeiten) mit sich. Zudem kann die im Wasser gespeicherte thermische Energie (z. B. Thermalwasser) genutzt werden. Hinweise und Ideen:Das Schaubild lässt sich als Einstieg oder Veranschaulichung in allen Unterrichtssituationen mit Thema “Wasser als Energieträger” einsetzen. Sie stellt den regenerativen Energieträger Wasser in seinen Erscheinungsformen vor und verweist dabei auf die in der Wasserkraft vorhandenen Energiezustände.

Bild

Logo creative commons

Siemens Stiftung

Generator für Windrad

Foto:Rotor des Generators einer Windenergieanlage.Es handelt sich hier um einen Vielpol-Generator, erkenntlich an der Vielzahl von Spulen auf dem äußeren Ring. Diese bewegen sich bei Betrieb an einem Statorring vorbei, der mit einer entsprechenden Anzahl von Permanentmagneten bestückt ist. Im Innenbereich des Rotors kann man die Regelelektronik erkennen. Diese Vielpol-Generatoren mit Permanentmagneten liefern bei relativ geringem Volumen und geringer Masse über einen weiten Drehzahlbereich gute Leistung. Auf ein Getriebe zur Anpassung der Frequenz des gelieferten Wechselstroms kann verzichtet werden. Der Wechselstrom, egal welcher Drehzahl, wird zunächst gleichgerichtet und anschließend nach elektronischer Wechselrichtung mit exakt 50 Hz ins Netz eingespeist. Hinweise und Ideen:Wie hängt die Frequenz eines Wechselstromgenerators von der Drehzahl ab? Warum haben herkömmliche Windräder eine aufwändige Drehzahlregelung mit Getriebe und Generatoren mit abschaltbaren Polpaaren?


Bild

Siemens Stiftung

Power to Gas

%rafik, beschriftet:Durch die Umwandlung von überschüssigem Wind- und Solarstrom in Wasserstoff oder sogar Methan (Power to Gas) kann das bestehende Erdgasnetz zur Verteilung und Speicherung genutzt werden. Überschüssiger Strom kann zur Elektrolyse (elektrochemische Zersetzung) von Wasser (H2O) zu Wasserstoffgas (H2) und Sauerstoffgas (O2) genutzt werden. Das Wasserstoffgas wird dann unter Druck oder verflüssigt in Tanks gelagert. Bei Strombedarf wird der Wasserstoff durch Verbrennung über Brennstoffzellen, Gasturbinen, Diesel- oder Stirlingmotoren wieder zu Strom zurückgewandelt. Alternativ kann Wasserstoffgas auch bis zu ca. 5 % bis 10 % ins Erdgasnetz eingespeist werden. Wächst der Anteil an regenerativem Strom, wird aus H2 und CO2 durch mehrstufige katalytische Reaktionen Methan (CH4 = “Erdgas”) gewonnen und ins Gasnetz eingespeist. Die dafür nötige Chemie und Technologie ist altbewährt, wurde doch bereits in Deutschland im 2. Weltkrieg auf ähnliche Weise synthetisches Benzin hergestellt. Mit dem Erdgasnetz und den bereits in großem Maßstab vorhandenen Erdgasspeichern (bis zu 4 Monaten Kapazität) besteht bereits eine sehr leistungsfähige und flächendeckende Verteilungs- und Speicherinfrastruktur. Auch die bereits vorhandenen Gasturbinenkraftwerke könnten nun rein regenerativ weiter betrieben werden. Die Wasserstoff- bzw. Methanerzeugung und die Stromerzeugung durch Gasturbinen können an beliebigen Stellen im Stromnetz erfolgen. D. h. auch das Stromnetz muss nicht so stark ausgebaut werden%


Bild

Siemens Stiftung

Wellenkraftwerk

Grafik, beschriftet:Schnitt durch ein Wellenkraftwerk mit Wells-Turbine.In einem Wellenkraftwerk wird die kinetische Energie der Meereswellen in elektrische Energie umgewandelt. Das Wellenkraftwerk z. B. arbeitet nach dem Prinzip einer oszillierenden Wassersäule: Ein trichterförmiges Dach deckt die Wasseroberfläche ab. Darin steigen die Wellen auf und ab, wobei die eingeschlossene Luft komprimiert und dekomprimiert wird. Die in dem Druckunterschied gespeicherte Energie wird über eine sog. Wells-Turbine und einen Generator in Strom umgewandelt. Das Besondere an der Wells-Turbine ist, dass - wenn sie einmal in Bewegung ist - sie die Drehrichtung beibehält, egal aus welcher Richtung sie durchströmt wird. Ein Wellenkraftwerk in Schottland versorgt bereits 50 Haushalte mit elektrischer Energie. Experten schätzen das nutzbare Energiepotenzial der Wellenkraft auf ein Terawatt - das entspricht etwa der Leistung von rund 1.400 konventionellen Kraftwerksblöcken. Das Kosten-Nutzen-Verhältnis ist allerdings relativ schlecht, es wurden daher seit 2011 weltweit kaum weitere Wellenkraftwerke dieser Art gebaut. Hinweise und Ideen:Worin unterscheidet sich ein Wellenkraftwerk von einem konventionellen Wasserkraftwerk? Wie unterscheiden sich die verwendeten Turbinen in Aufbau und Funktion? Wie kommt es physikalisch zustande, dass sich die Wells-Turbine immer in dieselbe Richtung dreht? Wo auf der Welt gibt es optimale Bedingungen für Wellenkraftwerke? Wie funktioniert der modernste Typ von Meereskraftwerken nach dem “Seaflow” Prinzip?

Bild

Siemens Stiftung

Welche Energie steckt in welchem Energieträger?

Tabelle:Übersicht, woher die Energie, die in den Primärenergieträgern gespeichert ist, kommt und welcher Energieform sie entspricht.Die Energie, die in den primären Energieträgern gespeichert ist, stammt aus unterschiedlichen Energiequellen: Der Hauptanteil stammt von der Sonne und ist in fossilen und vielen regenerativen Energieträgern in unterschiedlicher Form gespeichert. Im Primärenergieträger “Geothermie” steht die Restwärme des Erdkerns zur Verfügung. Die Energie im Gezeitenhub stammt aus der Rotationsenergie der Erde und die Energie in den nuklearen Energieträgern resultiert aus Prozessen in den Atomkernen bestimmter Elemente. Hinweise und Ideen:Die Schülerinnen und Schüler können überlegen, auf welchen Prozess sich alle Energiequellen letztendlich zurückführen lassen. Welche der Energiequellen sind in Zukunft von großer Bedeutung und warum? Das Beispiel mit dem Gezeitenhub ist didaktisch besonders wertvoll für den Physikunterricht, denn es scheint auf den ersten Blick ein Perpetuum mobile zu sein. Die Frage “Woher stammt die Energie eines Gezeitenkraftwerks?” ist mit “Aus dem Höhenunterschied des Wassers (m x g x h)!” nicht wirklich beantwortet. Zwar leuchtet jedem ein, dass die Hubarbeit der Mond geleistet hat. Doch woher hat er die Energie genommen? Was auf der einen Seite an Energie “gewonnen” wird, muss ja woanders “verloren” gehen. Richtig ist: Die Gravitation des Monds verschiebt die Wassermassen der Meere, was letztlich zu einer Abbremsung der Erdrotation führt. Die im Gezeitenkraftwerk gewonnene mechanische Energie stammt also letztlich aus dem Primärenergieträger “Rotationsenergie der Erde”.

Bild

Siemens Stiftung

Energiequellen für elektrischen Strom

Schemagrafik:Übersicht über die Umwandlungspfade von verschiedenen Energiequellen hin zu elektrischem Strom.Um die in nuklearen, regenerativen und fossilen Energieträgern enthaltenen Energieformen für den Menschen nutzbar zu machen, müssen sie in eine andere Energieform umgewandelt werden, z. B. in elektrische Energie (“Strom”). Von den hier gezeigten Energieträgern ist bei Kernenergie, nachwachsenden und fossilen Brennstoffen sowie Geo- und Solarthermie eine direkte Umwandlung in elektrische Energie nicht möglich. Daher müssen mehrere Umwandlungsschritte hintereinandergeschaltet werden. Die beiden letzten Schritte sind die Umwandlung von thermischer in mechanische Energie in der Turbine und die Umwandlung von mechanischer in elektrische Energie im Generator.Wasser- und Windkraft können direkt einen Generator antreiben und Photovoltaik erzeugt direkt elektrische Energie. Hinweise und Ideen:Sehr gut geeignet, um das Gesetz von der Erhaltung der Energie zu erläutern. Dass Energie nicht erzeugt, sondern nur umgewandelt werden kann, ist den Schülern nicht selbstverständlich.

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.