Bild

Siemens Stiftung

Stromkreis (Reihenschaltung)

Grafik: In diesem Stromkreis sind zwei Glühbirnen hintereinander geschaltet. Damit befinden sich die Lampen in einem gemeinsamen Stromkreis.Die von der Batterie gelieferte Energie wird auf alle Bauelemente verteilt, so erhalten diese also weniger Energie, als wenn sie alleine an die betreffende Batterie angeschlossen wären: Die Glühlampen leuchten schwächer und die Batterie hält länger als bei einer einzelnen Glühlampe.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Durchgangsprüfer

Foto: Mit einem Durchgangsprüfer wird eine Messung an einer Glühlampe durchgeführt. Das Anzeigelämpchen des Durchgangsprüfers leuchtet, folglich ist die Glühlampe funktionsfähig.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Bild

Logo creative commons

Siemens Stiftung

Parabolrinnenkraftwerk

Foto: Parabolrinnen-Kraftwerk in Lockhart bei Harper Lake in Kalifornien (Mojave Solar Project)Diese Sonnenkraftwerke arbeiten mit langen Zeilen (z. B. 112 m) von Parabolspiegeln, in deren Brennpunkt ein Rohr mit Arbeitsmittel verläuft. Die Ausrichtung der Spiegel wird dem Sonnenstand automatisch nachgeführt. Die Strahlung wird durch die Bündelung im Spiegel 80-fach verstärkt und ein Öl im Absorber wird auf rund 400 °C erhitzt. Das heiße Öl fließt zum Kraftwerkshaus, wo es über einen Wärmeaustauscher Wasserdampf erzeugt, der eine Dampfturbine mit Generator antreibt. (Alternativ werden Kraftwerke mit flüssiger Salzschmelze im Absorberrohr angedacht.) In den USA arbeitet seit 20 Jahren ein Parabolrinnenpark aus neun Kraftwerken mit einer Gesamtleistung von 350 MW. In Spanien erreichen Andasol 1, 2 und 3 zusammen 150 MW. Dank integriertem Wärmespeicher aus Salzschmelze liefert Andasol auch ohne Sonne über 7 h volle Leistung. In Marokko entsteht derzeit die weltweit größte Anlage mit 580 MW.


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Generator für Windrad

Foto:Rotor des Generators einer Windenergieanlage.Es handelt sich hier um einen Vielpol-Generator, erkenntlich an der Vielzahl von Spulen auf dem äußeren Ring. Diese bewegen sich bei Betrieb an einem Statorring vorbei, der mit einer entsprechenden Anzahl von Permanentmagneten bestückt ist. Im Innenbereich des Rotors kann man die Regelelektronik erkennen. Diese Vielpol-Generatoren mit Permanentmagneten liefern bei relativ geringem Volumen und geringer Masse über einen weiten Drehzahlbereich gute Leistung. Auf ein Getriebe zur Anpassung der Frequenz des gelieferten Wechselstroms kann verzichtet werden. Der Wechselstrom, egal welcher Drehzahl, wird zunächst gleichgerichtet und anschließend nach elektronischer Wechselrichtung mit exakt 50 Hz ins Netz eingespeist. Hinweise und Ideen:Wie hängt die Frequenz eines Wechselstromgenerators von der Drehzahl ab? Warum haben herkömmliche Windräder eine aufwändige Drehzahlregelung mit Getriebe und Generatoren mit abschaltbaren Polpaaren?


Bild

Siemens Stiftung

Speicherkraftwerk

Grafik:
Funktionsprinzip eines Speicherkraftwerks.

Beim Speicherkraftwerk wird von Natur aus nachfließendes Wasser mithilfe eines Stausees angestaut und für Bedarfsspitzen bevorratet. Das gestaute Wasser wird dann mittels Druckrohrleitungen zu den Turbinen des niedriger gelegenen Kraftwerks geführt. Die gesamte Lageenergie des Wassers im Speicherbecken ist also ein Energiespeicher für Spitzenzeiten. Kleinere Speicherkraftwerke verwenden Pelton-Turbinen, große Speicherkraftwerke (großer Druck und große Wassermenge) verwenden Francis-Turbinen.

Bild

Siemens Stiftung

Vom Wasserrad zur Turbine (GS)

Fotocollage:
Fotos von einem Wasserrad sowie drei verschiedenen Turbinenarten.

Schon früh setzte man Wasserräder ein, um die Energie von Wasser zu nutzen, z. B. zum Antreiben eines Mühlrads. Die Turbinen, die in Wasserkraftwerken eingesetzt werden, sind eine Weiterentwicklung des klassischen Wasserrads, um Generatoren für die Stromerzeugung anzutreiben. Diese Turbinen heißen nach ihren Erfindern: Pelton, Kaplan und Francis.

Bild

Siemens Stiftung

Heißer Draht (Geschicklichkeitsspiel)

Grafik, beschriftet: Schematischer Versuchsaufbau zum “Heißen Draht”.Entlang eines gebogenen, in weiten Teilen nicht isolierten Drahtes wird eine Schlinge aus Metall geführt. Jede Berührung von Draht und Schlinge führt zu einer Reaktion des Signalgebers, wodurch die Notwendigkeit von Isolatoren für einen kontrollierten Stromfluss erfahren werden kann.

Bild

Siemens Stiftung

Anteil der Energieträger am weltweiten Strommix von 2005 bis 2040

%iagramm:Das Diagramm zeigt, dass die regenerativen Energien ab ca. 2040 auch weltweit den größten Anteil an der Stromerzeugung haben werden. Es wird deutlich, dass auch in Zukunft die fossilen Energieträger, insbesondere die Kohle, und die dafür entwickelten Kraftwerkstechnologien eine zentrale Rolle bei der Energieversorgung spielen werden. Diese Rolle wird aber zunehmend kleiner.Hinweise und Ideen:In Deutschland sowie in einigen anderen Ländern soll laut Prognosen der Anteil der regenerativen Energien an der Stromerzeugung wesentlich schneller steigen als am gesamten Primärenergieverbrauch. In Deutschland z. B. soll der Anteil in 2040 bei Strom bereits über 65 % liegen. Weltweit liegen die Prognosen sowohl bei Strom als auch beim Gesamtprimärenergieverbrauch (also Strom + Verkehr + Wärmeerzeugung) allerdings gleichauf bei gut 30 %. Wie kann man diesen Unterschied erklären?Unter Verwendung der Quelle: “World Energy Outlook 2012”, International Energy Agency IEA (2012%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Solarthermische Kraftwerke - Prinzip

Grafik, beschriftet:Das physikalische Prinzip eines Parabolrinnenkraftwerks und einer Dish-Stirling-Anlage im Vergleich.Zunehmend werden Kraftwerke zur Stromerzeugung aus Sonnenwärme gebaut. Die Grafik zeigt zwei Bauweisen, die sich durchgesetzt haben.Parabolrinnenkraftwerk: Ein großes Sonnenkraftwerk, dessen Leistung vergleichbar mit Kohlekraftwerken ist. Lange Zeilen von Parabolspiegeln haben in ihrem Brennpunkt ein Absorberrohr, das mit einem Arbeitsmittel gefüllt ist. Über einen Wärmeaustauscher erzeugt das heiße Arbeitsmittel Dampf, mit dem sich dann große Dampfturbinen und Generatoren betreiben lassen.Dish-Stirling-Anlage: Ein eher kleines Kraftwerk, dessen zentrales Element ein großer runder Hohlspiegel (Dish, Teller) ist. In seinem Brennpunkt befindet sich der Arbeitszylinder eines Stirlingmotors, der einen Generator antreibt. Das gegenwärtig leistungsfähigste Kraftwerk dieser Art ist der Euro-Dish-Stirling-Typ. Hinweise und Ideen:Zu den solarthermischen Kraftwerken zählen auch das “Aufwindkraftwerk”, der “Sonnenofen” und das “Turmkraftwerk”. Wie sind diese Kraftwerke aufgebaut und wie funktionieren sie? In welchen Gegenden auf der Erde gibt es solarthermische Kraftwerke und von welchem Typ sind sie? Weiterführende Informationen zum solarthermischen Kraftwerk findet man im Leitfaden “Regenerative Energien”.