Bild

Siemens Stiftung

Vom Wasserrad zur Turbine (GS)

Fotocollage:
Fotos von einem Wasserrad sowie drei verschiedenen Turbinenarten.

Schon früh setzte man Wasserräder ein, um die Energie von Wasser zu nutzen, z. B. zum Antreiben eines Mühlrads. Die Turbinen, die in Wasserkraftwerken eingesetzt werden, sind eine Weiterentwicklung des klassischen Wasserrads, um Generatoren für die Stromerzeugung anzutreiben. Diese Turbinen heißen nach ihren Erfindern: Pelton, Kaplan und Francis.

Bild

Siemens Stiftung

Biomasse Brennholz

Foto: Geschichtete HolzscheiteBiomasse, vor allem Holz, ist eine der ältesten vom Menschen genutzten Energiequellen. Die Energie “gewinnt” man daraus durch Verbrennung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Weltweiter Verbrauch fossiler Energieträger

Diagramm und Tabelle:Der weltweite Verbrauch fossiler Energieträger und deren Einsatz bei der Strom- und Wärmeerzeugung in Zahlen.Das Tortendiagramm gibt den prozentualen Anteil der fossilen Energieträger (Kohle, Erdöl und Erdgas) an der weltweiten Primärenergieversorgung wieder. Eine Aufschlüsselung nach Verteilung dieser fossilen Energieträger auf die Strom- und Wärmeerzeugung, aber auch auf andere Bereiche wie z. B. die Industrie, zeigt die Tabelle. Hinweise und Ideen:Diagramm und Tabelle geben den Schülern und Schülerinnen einen Überblick, wozu und in welchem Umfang fossile Energieträger im Jahr 2012 verwendet wurden. Überlegungen zur Endlichkeit dieser Energieträger und zum Umstieg bzw. zur Ausweitung der Nutzung regenerativer Energieträger lassen sich anschließen. Weitere Informationen findet man in der Sachinformation “Energieträger im Überblick” und der Grafik “Wie lange reichen unsere Energieträger?”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Biomasse

Diagramm:Überblick über die wichtigsten Vertreter der Biomasse und ihre Verwendung als primäre und sekundäre Energieträger.Biomasse ist eine der ältesten vom Menschen genutzten Energiequellen, v. a. in der Form von Holz. Die Energie “gewinnt” man daraus durch Verbrennung. Neben Holz können auch grüne Pflanzen (z. B. Chinaschilf) und getrockneter Dung verbrannt werden. Angesichts der Verknappung von Erdöl wird Biomasse vermehrt zur Gewinnung von Kraftstoffen eingesetzt. Das Diagramm zeigt, welche chemischen Verfahren hierbei zum Einsatz kommen und welche Biokraftstoffe dabei entstehen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Wasser

Übersichtsgrafik: Der Energieträger Wasser wird in vier unterschiedlichen Erscheinungsformen dargestellt.Wasser ist ein umweltfreundlicher, regenerativer Energieträger. Es führt Energie in Form von Lage- und Bewegungsenergie (Wellen, Fließwasser und Gezeiten) mit sich. Zudem kann die im Wasser gespeicherte thermische Energie (z. B. Thermalwasser) genutzt werden. Hinweise und Ideen:Das Schaubild lässt sich als Einstieg oder Veranschaulichung in allen Unterrichtssituationen mit Thema “Wasser als Energieträger” einsetzen. Sie stellt den regenerativen Energieträger Wasser in seinen Erscheinungsformen vor und verweist dabei auf die in der Wasserkraft vorhandenen Energiezustände.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Fahrraddynamo

Foto: Ein Fahrraddynamo.Hinweise und Ideen:Als Beispiel für einen Stromgenerator, der mechanische in elektrische Energie umwandelt.


Bild

Siemens Stiftung

Dampfdruckkurve und Phasendiagramm von Wasser

Diagramme:Die Dampfdruckkurven (p-V-Diagramm) und das Phasendiagramm (p-T-Diagramm) von Wasser werden gegenübergestellt.Erhitzt man Wasser bei atmosphärischem Normaldruck auf 100 °C, so entsteht Dampf. Wie wirkt sich aber eine Erhöhung oder Absenkung des Drucks auf die Verdampfungstemperatur aus?Die Antwort geben die Dampfdruckkurve (T-Kurven im p-V-Diagramm links) und das Phasendiagramm (p-T-Diagramm rechts) des Wassers. Dampfdruck nennt man den Druck, bei dem Gas und Flüssigkeit im Gleichgewicht miteinander stehen, d. h., es verdampfen ebenso viele Moleküle wie auch wieder kondensieren. Oberhalb der kritischen Temperatur (Zahlenwerte sind angegeben) ist das Wasser, egal bei welchem Druck, immer gasförmig und es kann als reales Gas behandelt werden (Van-der-Waals-Gleichung, Formel ist angegeben). Unterhalb der kritischen Temperatur gibt es zu jeder Temperatur einen Dampfdruck, für den ein Zweiphasengebiet (flüssig und gasförmig) vorliegt. Im Bereich der flüssigen Phase kann man an der steilen Steigung der Kurven erkennen, das flüssige Substanzen kaum kompressibel sind. Die kritische Temperatur darf nicht verwechselt werden mit der Temperatur des Tripelpunkts (siehe p-T-Diagramm). Er kennzeichnet die Werte von Temperatur und Druck, bei der alle Phasen (fest - flüssig - gasförmig) gleichzeitig vorliegen. Hinweise und Ideen:Bei welcher Temperatur kocht Wasser auf dem Mount Everest? Sog. “Dampfdrucktabellen” geben Aufschluss darüber. Interessant wäre auch der Hinweis auf die Phasenwandlungspunkte als Haltepunkte der Temperatur. Beim Phasenübergang von flüssig nach gasförmig führt die zugeführte Energie zunächst nicht zur Temperaturerhöhung. Ebenso beim Schmelzen von Eis. Erst wenn alles Wasser verdampft bzw. geschmolzen ist, steigt die Temperatur weiter.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Xenon-Autolampe

Foto: Rechts eine Xenon-Bogenlampe, links Xenonlampe im Autoscheinwerfer.Hinweise und Ideen:Als Beispiel für die Umwandlung von elektrischer Energie in Strahlungsenergie.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Sicherheitshinweise zu Experimento | 8+ (Poster)

Sachinformation:Worauf müssen wir achten, wenn wir experimentieren?Ein Poster mit Sicherheitshinweisen zum Aufhängen in das Klassenzimmer.Hinweise und Ideen:Die Erziehungs-/Lehrkraft muss die Experimentierregeln vor dem Experimentieren mit den Kindern besprechen!


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Zukünftiger weltweiter Primärenergiebedarf

%iagramm:Prognostizierte Entwicklung des Primärenergiebedarfs weltweit, differenziert nach Industrieländern und noch nicht voll entwickelten Ländern.Das Diagramm beschreibt den weltweiten jährlichen Bedarf an Primärenergieträgern im Zeitraum von 2000 bis 2150 (Abschätzung aus dem Jahr 2002). Der Primärenergiebedarf wird in der Einheit 1013 kWh/Jahr angegeben und berücksichtigt die Entwicklung der Bevölkerungszahlen und des Bruttosozialprodukts pro Kopf bei zunehmender Industrialisierung. Das Diagramm zeigt deutlich, dass das Wachstum nicht unbegrenzt ist.Übrigens: In Deutschland ist der Primärenergieverbrauch seit 1990 nahezu konstant, obwohl sich das Bruttoinlandsprodukt seit dieser Zeit um ca. 27 % erhöht hat.Hinweise und Ideen:Ausgehend von dieser Prognose können Überlegungen angestellt werden, welche Folgen sich daraus für fossile Energieressourcen und regenerative Energieträger ergeben könnten. Wie sehen die Prognosen für die Entwicklung der Weltbevölkerung und des Bruttosozialprodukts pro Kopf aus? Informationen hierzu findet man in der Studie von Prof. D. Pelte der Universität Heidelberg%


Dieses Material ist Teil einer Sammlung