Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Anteil der Energieträger am weltweiten Strommix von 2005 bis 2040

%iagramm:Das Diagramm zeigt, dass die regenerativen Energien ab ca. 2040 auch weltweit den größten Anteil an der Stromerzeugung haben werden. Es wird deutlich, dass auch in Zukunft die fossilen Energieträger, insbesondere die Kohle, und die dafür entwickelten Kraftwerkstechnologien eine zentrale Rolle bei der Energieversorgung spielen werden. Diese Rolle wird aber zunehmend kleiner.Hinweise und Ideen:In Deutschland sowie in einigen anderen Ländern soll laut Prognosen der Anteil der regenerativen Energien an der Stromerzeugung wesentlich schneller steigen als am gesamten Primärenergieverbrauch. In Deutschland z. B. soll der Anteil in 2040 bei Strom bereits über 65 % liegen. Weltweit liegen die Prognosen sowohl bei Strom als auch beim Gesamtprimärenergieverbrauch (also Strom + Verkehr + Wärmeerzeugung) allerdings gleichauf bei gut 30 %. Wie kann man diesen Unterschied erklären?Unter Verwendung der Quelle: “World Energy Outlook 2012”, International Energy Agency IEA (2012%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.


Bild

Siemens Stiftung

Fakten zur Sonnenenergie

%?bersichtsgrafik:Schematische Darstellung des Energieflusses von der Sonne zur Erde: Wie viel Energie produziert die Sonne und wie viel davon kommt auf der Erdoberfläche an?Die Sonne ist der Hauptenergielieferant der Erde, sie liefert etwa 99,98 % des gesamten Energiebeitrags zum Erdklima. Welch großes Potenzial in der technischen Nutzung der Sonnenenergie als Energiequelle steckt, wird dadurch deutlich, dass der derzeitige Weltenergieverbrauch nur 0,006 % der eingestrahlten Sonnenenergie beträgt. Die Grafik gibt einen Überblick über die von der Sonne abgestrahlten und auf der Erde ankommenden Energiemengen. Zu beachten ist, dass die von der Sonne eingestrahlte Energie letztlich zu 100 % wieder von der Erde zurück in den Weltraum abgestrahlt wird. Die Energiebilanz der Erde ist in allen Ebenen von der Erdoberfläche bis zum Weltraum ausgeglichen. Doch Achtung: Ein minimaler Bruchteil der eingestrahlten Energie wird durch die Photosynthese (ca. 0,1 %) oder durch menschliche Aktivitäten (ca. 0,005 %) gespeichert und verbleibt längerfristig auf der Erde.Hinweise und Ideen:Um die Anschaulichkeit zu erhöhen, sind hier die Größenverhältnisse von Sonne und Erde nicht maßstabsgetreu umgesetzt. Es ist berücksichtigt, dass letztlich 100 % der eingestrahlten Energie wieder ins Weltall zurückgestrahlt werden%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Strahlungsenergie

Diagramm:Formeln für die Strahlungsenergie elektromagnetischer Wellen und das Planck'sche Strahlungsgesetz.Strahlungsenergie ist die Energie elektromagnetischer Wellen. Sie ist proportional zum Quadrat der Amplitude der elektrischen bzw. der magnetischen Feldstärke. Elektromagnetische Wellen hoher Frequenz und damit Energie haben Teilchencharakter. Die Energie dieser Teilchen ist proportional zur Frequenz bzw. umgekehrt proportional zu ihrer Wellenlänge. Der Proportionalitätsfaktor ist das Planck’sche Wirkungsquantum h. Dass Strahlungsenergie quantisiert sein muss, fand Max Planck bei der Untersuchung der Strahlung schwarzer Körper. Er formulierte ein Strahlungsgesetz, das aber erst durch Einsteins Postulat von den Lichtquanten erklärt werden konnte. Zahlenbeispiel für die Planck’sche Strahlungsformel:Die Sonne hat eine Oberflächentemperatur von 5.800 K, die damit verbundene Strahlungsleistung ist nach der Planck’schen Strahlungsformel 3,85 x 1023 kW. Davon trifft nur ein sehr kleiner Anteil auf die Erde (bei senkrechtem Strahlungseinfall 1,37 kW/m²).Hinweise und Ideen:Strahlungsenergie kann vielfach in andere Energieformen umgewandelt werden: Beim Röntgen wird die Strahlungsenergie in chemische Energie verwandelt (Schwärzung des Fotofilms), Licht wird in der Solarzelle in elektrische Energie umgewandelt, ebenso Funkwellen in einer Antenne. Die Energie von Mikrowellen kann man zur Erwärmung von Speisen verwenden.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Spracherkennung: Satz, Wort und Phonem

Diagramm:Die Bausteine der Sprache, vom Phonem zum Satz visuell dargestellt.Die Grafik zeigt die Oszilloskop-Kurve des gesprochenen Satzes “It's raining cats and dogs” sowie ausschnittsweise die Einheiten, aus denen sich die Sprache zusammensetzt: Satz, Wort und Phonem.Hinweise und Ideen:Spracherkennung und Sprachsynthese sind ganz aktuelle Themen in der Kommunikations- und Informationstechnik.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Der menschliche KörperBau und Leistung eines SinnesorgansReizaufnahme und InformationsübermittlungSinnesleistungen

Bild

Siemens Stiftung

Schallbrechung

Schemagrafik:Schallbrechung in Luft mit unterschiedlichen Temperaturschichten (von warm nach kalt).Die Schallgeschwindigkeit in Luft hängt von der Dichte und damit auch von der Temperatur ab: bei hohen Temperaturen ist der Schall schneller als bei niedrigen. Beim Übergang von einer warmen in eine kältere Luftschicht nimmt die Schallgeschwindigkeit also ab. Mit der Geschwindigkeit ändert sich aber auch die Ausbreitungsrichtung. Man sagt, die Schallwelle wird “gebrochen”. Im beschriebenen Fall, also beim Übergang von warmer nach kalter Luftschicht, wird die Schallwelle nach oben hin gebrochen.Hinweise und Ideen:Wie verhält sich der Schall, wenn er von einer kälteren in eine wärmere Schicht dringt?Ist es richtig, dass man gegen den Wind schlechter hört als mit dem Wind?Letzteres kann gemeinsam mit den Schülerinnen und Schülern im Versuch nachgeprüft werden.Ein Vergleich mit der Brechung von Lichtstrahlen bietet sich an.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Temperaturabhängigkeit der Dichte

Diagramm: Dichte-Temperatur-Verlauf bei Wasser im Vergleich zu Benzol; Gegenüberstellung veranschaulicht die Dichteanomalie des Wassers.Bei den meisten Stoffen gilt als kontinuierlicher Verlauf: je höher die Temperatur, desto niedriger die Dichte der Substanz. Bei Phasenübergängen (Gas -> Flüssigkeit -> Feststoff) ändert sich die Dichte um diesen Temperaturbereich drastisch. Bei Wasser tritt jedoch ein Dichtesprung um den Gefrierpunkt auf. Die Dichte nimmt nicht zu, sondern entgegen den Erwartungen ab. Im Gegensatz dazu zeigt die Grafik den Dichte-Temperatur-Verlauf bei “normalen” Stoffen (hier Benzol). Hinweise und Ideen:Woher könnte dieses Verhalten kommen?Welche praktische Bedeutung hat diese Anomalie des Wassers?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Primärenergie-Verbrauch weltweit

Diagramm:Primärenergie-Verbrauch weltweit im Jahr 2012.Diagramm:Ein Balkendiagramm gibt den Umfang des Primärenergie-Verbrauchs in Millionen Tonnen Rohöleinheiten (tRÖE) einzelner Weltregionen an und deren prozentualen Anteil am Weltenergie-Verbrauch. Hinweise und Ideen:Für ein Kurzreferat eignen sich die Fragen: Wer oder was ist die OECD? Was für Ziele hat sie? Welche Länder sind OECD-Mitglied?Unter Verwendung der Quelle: International Energy Agency (IEA)

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Energie Ökologie

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Dieses Material ist Teil einer Sammlung