Bild

Siemens Stiftung

Temperaturabhängigkeit der Dichte

Diagramm: Dichte-Temperatur-Verlauf bei Wasser im Vergleich zu Benzol; Gegenüberstellung veranschaulicht die Dichteanomalie des Wassers.Bei den meisten Stoffen gilt als kontinuierlicher Verlauf: je höher die Temperatur, desto niedriger die Dichte der Substanz. Bei Phasenübergängen (Gas -> Flüssigkeit -> Feststoff) ändert sich die Dichte um diesen Temperaturbereich drastisch. Bei Wasser tritt jedoch ein Dichtesprung um den Gefrierpunkt auf. Die Dichte nimmt nicht zu, sondern entgegen den Erwartungen ab. Im Gegensatz dazu zeigt die Grafik den Dichte-Temperatur-Verlauf bei “normalen” Stoffen (hier Benzol). Hinweise und Ideen:Woher könnte dieses Verhalten kommen?Welche praktische Bedeutung hat diese Anomalie des Wassers?


Bild

Siemens Stiftung

Phasendiagramm von Wasser

Diagramm:p-T-Diagramm des reinen Wassers. Die Linien geben an, bei welcher Temperatur und welchem Druck die Phasen fest, flüssig und gasförmig miteinander im Gleichgewicht stehen. Nur am Tripelpunkt sind alle drei Phasen im Gleichgewicht, sonst sind es maximal zwei.Das Diagramm enthält neben den Gleichgewichtskurven (Schmelzdruckkurve, Sublimationskurve, Dampfdruckkurve) auch die Druck- und Temperaturangaben für Schmelz-, Siede-, Tripel- und kritischen Punkt.Achtung: Die Achsen des Diagramms sind nicht maßstabsgetreu gezeichnet.Hinweise und Ideen:In diesem Diagramm spiegelt sich auch die Dichte-Anomalie des Wassers (im festen Zustand niedrigere Dichte als im flüssigen Zustand) wider: Die Schmelzdruckkurve weist eine negative Steigung auf. Grund für die Dichte-Anomalie sind die Wasserstoffbrückenbindungen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiequellen für elektrischen Strom

Schemagrafik:Übersicht über die Umwandlungspfade von verschiedenen Energiequellen hin zu elektrischem Strom.Um die in nuklearen, regenerativen und fossilen Energieträgern enthaltenen Energieformen für den Menschen nutzbar zu machen, müssen sie in eine andere Energieform umgewandelt werden, z. B. in elektrische Energie (“Strom”). Von den hier gezeigten Energieträgern ist bei Kernenergie, nachwachsenden und fossilen Brennstoffen sowie Geo- und Solarthermie eine direkte Umwandlung in elektrische Energie nicht möglich. Daher müssen mehrere Umwandlungsschritte hintereinandergeschaltet werden. Die beiden letzten Schritte sind die Umwandlung von thermischer in mechanische Energie in der Turbine und die Umwandlung von mechanischer in elektrische Energie im Generator.Wasser- und Windkraft können direkt einen Generator antreiben und Photovoltaik erzeugt direkt elektrische Energie. Hinweise und Ideen:Sehr gut geeignet, um das Gesetz von der Erhaltung der Energie zu erläutern. Dass Energie nicht erzeugt, sondern nur umgewandelt werden kann, ist den Schülern nicht selbstverständlich.


Bild

Siemens Stiftung

Chemische Energie

Diagramm: Chemische Energie als Bindungsenergie zwischen Atomen in der Darstellung als Potenzialkurve.Sowohl in der Bindung von Atomen und Molekülen als auch in der Möglichkeit (Potenzial) zur chemischen Bindung steckt chemische Energie. Diese kann bei der Bildung oder beim Zerfall der Bindungen in Form von Wärme frei werden. Diese “Reaktionswärme” wird auch als Reaktionsenthalpie (H) bezeichnet. Wird Wärme frei (dH < 0), so spricht man von einer exothermen Reaktion, wird Wärme verbraucht (dH > 0) von einer endothermen. Jedes Gemisch von Ausgangsstoffen, das zu Endstoffen reagieren kann, ist also als ein Potenzial an chemischer Energie aufzufassen. Mikroskopisch steckt diese chemische Energie in den Bindungen zwischen einzelnen Atomen, wie es anhand der Potenzialkurve illustriert wird. Hinweise und Ideen:Chemische Energie ist eine Energieform, die sich gut speichern lässt - sei es im menschlichen Körper oder in Batterien und Akkus. Ein weiteres Beispiel ist Wasserstoff als chemischer Energiespeicher für regenerative Energien.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Thermische Energie

Diagramm:Formeln für die thermische Energie von Gasen sowie die Temperaturabhängigkeit der zugehörigen molaren Wärmekapazität bei konstantem Volumen.Die thermische oder innere Energie eines Stoffs ist die Summe der Bewegungsenergien seiner Atome bzw. Moleküle. Diese Energie ist als Temperatur messbar. Führt man dem Stoff Wärme zu, steigt die Teilchengeschwindigkeit und damit die Temperatur. Bei molekularen Gasen kann die Wärmezufuhr zusätzlich zur translatorischen Bewegung die Anregung anderer Bewegungsformen (Rotation und Schwingung) hervorrufen. Dies drückt sich im stufenförmigen Verlauf der molaren Wärmekapazität aus (Diagramm rechts). Die molare Wärmekapazität eines Stoffs gibt an, wie viel Energie man zuführen muss, um 1 mol eines Stoffs um 1 °C zu erhöhen. Für gasförmige Stoffe gilt: Falls die Gasteilchen sich nur linear bewegen (Translation), ist die Wärmemenge, die zugeführt werden muss, um das Gas um 1 °C zu erhöhen, konstant 3R/2. Im Fall molekularer Gase fangen die Moleküle ab einer bestimmten Temperatur an zu rotieren. In diesem Bereich (linearer Anstieg im Diagramm) muss man mehr Energie zuführen, um die Temperatur um 1 °C zu erhöhen, da die Energie nicht nur in die translatorische Bewegung geht, sondern auch in die Anregung der Rotation. Sind alle Teilchen in Rotation versetzt, so ist die Energie, die zugeführt werden muss, um die Temperatur um 1 °C zu erhöhen, wieder konstant 5R/2. Der Anstieg beim Übergang von Rotation nach Schwingung lässt sich analog erklären. Hinweise und Ideen:Die Übersichtsgrafik fasst das Thema Wärmeenergie am Beispiel Gase zusammen. Ausführliche Erläuterungen und Erläuterungen zur Wärme in Feststoffen findet man im Leitfaden “Was ist Energie?”.

Bild

Siemens Stiftung

Anregungsenergie eines Wassermoleküls

Diagramm:Wasser kann in Form der Schwingungen bzw. der Bewegung seiner Moleküle Wärmeenergie aufnehmen. Dieser Energieinhalt hängt vom Aggregatzustand ab: Wasserdampf enthält z. B. mehr Energie als flüssiges Wasser.Die uns umgebende Materie nimmt je nach Druck und Temperatur (in Kelvin) verschiedene Aggregatzustände an: fest, flüssig oder gasförmig. Das gilt auch für Wasser: Beim Übergang von fest nach flüssig bzw. flüssig nach gasförmig nimmt die Energie der Wassermoleküle zu, ohne dass dabei die Temperatur ansteigt. Dies entspricht den beiden Plateaus im Diagramm. Die “Breiten” der Plateaus liegen bei ca. 6 kJ/mol (Schmelzwärme) und ca. 40,7 kJ/mol (Verdampfungswärme).Hinweise und Ideen:Eignet sich gut zur Erläuterung des Themas Phasengleichgewicht.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Wasser als Lösungsmittel für Salze und Gase

Diagramm:Wasser löst ionische und polare Stoffe hervorragend, da es selbst eine polare Flüssigkeit ist.Die Löslichkeit in Wasser ist oft stark von der Temperatur abhängig; dabei verhalten sich Feststoffe und Gase unterschiedlich. Gase lösen sich bei zunehmender Temperatur schlechter in Wasser, während sich Feststoffe bei zunehmender Temperatur meist besser in Wasser lösen lassen (Ausnahmen gibt es mehrere, wie z. B. Lithiumsulfat).Hinweise und Ideen:Normalerweise gilt, dass ein Stoff sich umso besser in polaren Lösungsmitteln wie Wasser lösen lässt, je mehr polare Gruppen in diesem Stoff vorhanden sind. Überkritisches Wasser zeigt jedoch ähnliche Löslichkeitseigenschaften wie unpolare organische Lösungsmittel. Die Temperaturabhängigkeit der Löslichkeit ist ein gutes Beispiel, um den Unterschied von Geschwindigkeit und Gleichgewicht zu thematisieren.

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Diagramm Lösung

Sprachen

Deutsch

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Dampfdruckkurve und Phasendiagramm von Wasser

Diagramme:Die Dampfdruckkurven (p-V-Diagramm) und das Phasendiagramm (p-T-Diagramm) von Wasser werden gegenübergestellt.Erhitzt man Wasser bei atmosphärischem Normaldruck auf 100 °C, so entsteht Dampf. Wie wirkt sich aber eine Erhöhung oder Absenkung des Drucks auf die Verdampfungstemperatur aus?Die Antwort geben die Dampfdruckkurve (T-Kurven im p-V-Diagramm links) und das Phasendiagramm (p-T-Diagramm rechts) des Wassers. Dampfdruck nennt man den Druck, bei dem Gas und Flüssigkeit im Gleichgewicht miteinander stehen, d. h., es verdampfen ebenso viele Moleküle wie auch wieder kondensieren. Oberhalb der kritischen Temperatur (Zahlenwerte sind angegeben) ist das Wasser, egal bei welchem Druck, immer gasförmig und es kann als reales Gas behandelt werden (Van-der-Waals-Gleichung, Formel ist angegeben). Unterhalb der kritischen Temperatur gibt es zu jeder Temperatur einen Dampfdruck, für den ein Zweiphasengebiet (flüssig und gasförmig) vorliegt. Im Bereich der flüssigen Phase kann man an der steilen Steigung der Kurven erkennen, das flüssige Substanzen kaum kompressibel sind. Die kritische Temperatur darf nicht verwechselt werden mit der Temperatur des Tripelpunkts (siehe p-T-Diagramm). Er kennzeichnet die Werte von Temperatur und Druck, bei der alle Phasen (fest - flüssig - gasförmig) gleichzeitig vorliegen. Hinweise und Ideen:Bei welcher Temperatur kocht Wasser auf dem Mount Everest? Sog. “Dampfdrucktabellen” geben Aufschluss darüber. Interessant wäre auch der Hinweis auf die Phasenwandlungspunkte als Haltepunkte der Temperatur. Beim Phasenübergang von flüssig nach gasförmig führt die zugeführte Energie zunächst nicht zur Temperaturerhöhung. Ebenso beim Schmelzen von Eis. Erst wenn alles Wasser verdampft bzw. geschmolzen ist, steigt die Temperatur weiter.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).


Dieses Material ist Teil einer Sammlung