Bild

Siemens Stiftung

Energía de excitación de una molécula de agua

Diagrama:
El agua puede absorber energía térmica como vibraciones o movimiento de sus moléculas. Este contenido de energía depende del estado físico: el vapor contiene más energía que el agua líquida, por ejemplo.


El material que nos rodea adopta estados físicos diferentes según la presión y la temperatura (en Kelvin): sólido, líquido o gaseoso. Esto también es pertinente al agua: durante un cambio de fase de sólido a líquido y de líquido a gas, respectivamente, la energía de las moléculas de agua aumenta sin un aumento de temperatura: el diagrama del agua muestra mesetas. Los valores de estas mesetas son aproximadamente 6 kJ/mol (calor de fusión) y 40,7 kJ/mol (calor de vaporización) respectivamente.

Información e ideas:
Ideal para explicar el equilibrio de fases.

Bild

Siemens Stiftung

Curva de presión de vapor y diagrama de fases del agua

Diagramas:
Se comparan las curvas de presión de vapor (diagrama p-V) y el diagrama de fases (diagrama p-T) del agua.


Si se calienta agua a 100 °C a presión atmosférica normal, ésta se convierte en vapor. Pero, ¿qué efecto tiene aumentar o disminuir la presión sobre la temperatura de vaporización?
La curva de presión de vapor (curvas T en el diagrama p-V a la izquierda) y el diagrama de fases (diagrama p-T a la derecha) contestan dicha pregunta. La presión de vapor es la presión a la cual la fase líquida y gaseosa están en equilibrio, es decir, el mismo número de moléculas que se evaporan se condensan nuevamente. Por encima de la temperatura crítica (se dan valores numéricos) el agua es siempre gaseosa, independientemente de la temperatura, y se la puede tratar como un gas real (ecuación de Van der Waals, fórmula provista). Para cada temperatura por debajo de la temperatura crítica hay una presión de vapor para la cual hay una zona bifásica (líquida y gaseosa). Se puede deducir, a partir del aumento pronunciado en las curvas en el intervalo de la fase líquida, que las sustancias líquidas son apenas compresibles.
No se ha de confundir la temperatura crítica con la temperatura del punto triple (véase el diagrama p-T). Esto caracteriza los valores de temperatura y presión a los cuales todas las fases (sólida, líquida y gaseosa) están presentes simultáneamente.

Información e ideas:
¿A qué temperatura hierve el agua en el Monte Everest? Las "tablas de presión de vapor? proveen información sobre esto. También sería interesante referirse a los puntos de transición de fases como puntos críticos de temperatura. En la transición de la fase líquida a la gaseosa la energía aplicada no causa inicialmente un aumento de la temperatura. Lo mismo es pertinente a la fusión del hielo. No es sino hasta que toda el agua se ha evaporado o fundido que la temperatura aumenta.