Bild

Siemens Stiftung

Schallausbreitung: Tamburin und Kerze 3

Foto:Die vom Tamburin ausgehenden Schallwellen löschen eine brennende Kerze aus. Drittes von drei Fotos zum Versuch “Tamburin bläst Kerze aus”.Der Versuch “Tamburin bläst Kerze aus” demonstriert eindrucksvoll, wie Schallwellen sich ausbreiten und dass damit eine Bewegung der Luftteilchen verbunden ist.Hinweise und Ideen:Einfacher Versuch, der leicht im Klassenzimmer durchzuführen ist.Weitere inhaltliche Informationen zu diesem Foto gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Akustische PhänomeneSchall/Akustik: KenngrößenSchwingungen und Wellen


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schallstreuung

Grafik:Schallstreuung. Eine von mehreren Verhaltensweisen von Schallwellen, wenn sie auf ein Hindernis treffen.Unter Streuung versteht man eine Reflexion an kleinen Strukturen ohne ausgeprägte Vorzugsrichtung. Sie ist stark frequenzabhängig. Hinweise und Ideen:Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Optik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallausbreitung: Tamburin und Kerze 1

Foto: Tamburin vor einer brennenden Kerze. Erstes von drei Fotos zum Versuch “Tamburin bläst Kerze aus”.Der Versuch “Tamburin bläst Kerze aus” demonstriert eindrucksvoll, wie Schallwellen sich ausbreiten und dass damit eine Bewegung der Luftteilchen verbunden ist.Hinweise und Ideen:Einfacher Versuch, der leicht im Klassenzimmer durchzuführen ist.Weitere inhaltliche Informationen zu diesem Foto gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Akustische PhänomeneSchall/Akustik: KenngrößenSchwingungen und Wellen


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Brechung

Grafik, beschriftet:Das Wellenfrontmodell der Brechung an einer Grenzschicht macht die Ursache der Änderung der Ausbreitungsrichtung klar.Beim Übertritt von Wellen aus einem Medium in ein anderes ändert sich die Ausbreitungsgeschwindigkeit der Welle. Als Folge haben die Wellennormalen der einfallenden und der gebrochenen Wellen verschiedene Richtungen. Bei Lichtwellen ist die Änderung des Brechnungsindexes an der Grenzfläche die Ursache, bei Schallwellen die Änderung der Dichte. Die Grafik zeigt den Fall, dass die Ausbreitungsgeschwindigkeit beim Übergang vom ersten ins zweite Medium langsamer wird: Die Welle wird zum Lot der Grenzfläche hin gebrochen. Eine Erklärung dieses Verhaltens liefert das Huygen’sche Prinzip: Jeder Punkt einer Wellenfront ist Ausgangspunkt einer neuen Welle, einer sog. “Elementarwelle”. Die Einhüllende der Elementarwelle ergibt die neue Wellenfront. Hinweise und Ideen:Auch bei Schallwellen tritt Brechung an Grenzflächen auf (z. B. in der Atmosphäre beim Übergang von warmen in kalte Luftschichten).Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Schallkurve vs. Frequenz und Amplitude

Diagramm: Zeigt die Schwingung bei einem hohen und lauten Ton.Bezogen auf die Schallkurve oben links, hat die Schallkurve links unten einen doppelt so großen Schalldruck (Amplitude ist doppelt so hoch). Wohingegen die Kurve rechts oben einen doppelt so hohen Ton hat (Frequenzverdoppelung). Rechts unten sind sowohl Amplitude als auch Frequenz verdoppelt. Prinzipiell gilt für eine Schallkurve: · Die Amplitude steht für die Lautstärke.· Die Frequenz gibt die Tonhöhe an. Bei hohen Tönen sind die Wellenformen eng und wiederholen sich schnell, bei tiefen Tönen sind die Wellenformen breiter und wiederholen sich langsamer. Hinweise und Ideen:Es kann ein Bezug zu Kurvendiskussionen im Mathematikunterricht hergestellt werden.Zur Verwendung auf Arbeitsblättern, Folien etc.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Thermische Energie

Diagramm:Formeln für die thermische Energie von Gasen sowie die Temperaturabhängigkeit der zugehörigen molaren Wärmekapazität bei konstantem Volumen.Die thermische oder innere Energie eines Stoffs ist die Summe der Bewegungsenergien seiner Atome bzw. Moleküle. Diese Energie ist als Temperatur messbar. Führt man dem Stoff Wärme zu, steigt die Teilchengeschwindigkeit und damit die Temperatur. Bei molekularen Gasen kann die Wärmezufuhr zusätzlich zur translatorischen Bewegung die Anregung anderer Bewegungsformen (Rotation und Schwingung) hervorrufen. Dies drückt sich im stufenförmigen Verlauf der molaren Wärmekapazität aus (Diagramm rechts). Die molare Wärmekapazität eines Stoffs gibt an, wie viel Energie man zuführen muss, um 1 mol eines Stoffs um 1 °C zu erhöhen. Für gasförmige Stoffe gilt: Falls die Gasteilchen sich nur linear bewegen (Translation), ist die Wärmemenge, die zugeführt werden muss, um das Gas um 1 °C zu erhöhen, konstant 3R/2. Im Fall molekularer Gase fangen die Moleküle ab einer bestimmten Temperatur an zu rotieren. In diesem Bereich (linearer Anstieg im Diagramm) muss man mehr Energie zuführen, um die Temperatur um 1 °C zu erhöhen, da die Energie nicht nur in die translatorische Bewegung geht, sondern auch in die Anregung der Rotation. Sind alle Teilchen in Rotation versetzt, so ist die Energie, die zugeführt werden muss, um die Temperatur um 1 °C zu erhöhen, wieder konstant 5R/2. Der Anstieg beim Übergang von Rotation nach Schwingung lässt sich analog erklären. Hinweise und Ideen:Die Übersichtsgrafik fasst das Thema Wärmeenergie am Beispiel Gase zusammen. Ausführliche Erläuterungen und Erläuterungen zur Wärme in Feststoffen findet man im Leitfaden “Was ist Energie?”.

Bild

Siemens Stiftung

Reflexion

Schemagrafik:Das Phänomen der Reflexion wird mit dem Strahlencharakter des Lichts erklärt.Der Strahlencharakter des Lichts wird am Phänomen der Reflexion deutlich: Licht wird an spiegelnden Flächen gemäß dem Reflexionsgesetz reflektiert.1. Der einfallende Strahl und der reflektierte Strahl liegen in einer Ebene.2. Der Einfallswinkel ist genauso groß wie der Ausfallswinkel.Hinweise und Ideen:Gerade im Bereich Reflexion (inklusive zum Thema Spiegel) bieten sich Experimente an, die die Schüler mit einfachen Mitteln selbst durchführen können.

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Diagramm Licht Optik

Sprachen

Deutsch

Bild

Siemens Stiftung

Lärmwirkungen

Schemagrafik: Die Grafik zeigt, dass - abgesehen von den physischen Wirkungen - Schall erst im Gehirn zu Lärm wird.Lärm hat Auswirkungen auf die physische und psychische Gesundheit des Menschen. Was der Einzelne als Lärm empfindet, hängt von zahlreichen Faktoren ab, z. B. von der eigenen Stimmungslage.Hinweise und Ideen:Kann z. B. als Einstieg in das Thema “Wie wirkt Lärm?” verwendet werden.U. a. geeignet als Schaubild: einzelne Komponenten können auch abgedeckt werden (schrittweiser Aufbau).Unterrichtsbezug:Lärm: Ursachen, Wirkung, Schutz

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Gehörlosigkeit Lampe

Sprachen

Deutsch

Bild

Siemens Stiftung

Hörfeld eines Hörgeminderten

Diagramm:Hörfeld eines Hörgeminderten. Im Vergleich zum voll intakten Gehör wird vor allem die Einengung des Sprachbereichs zum Handicap.Der Sprachbereich ist der Frequenz- und Lautstärkebereich, in dem sprachliche Kommunikation vorwiegend stattfindet. Innerhalb des Hörfeldes ist er als nierenförmiger Bereich (= Sprachniere) zu erkennen. In unserer Abbildung ist der Sprachbereich blau unterlegt. Wenn z. B. Haarzellen im Innenohr geschädigt sind und ausfallen, verändert sich das Hörfeld, der Sprachbereich wird eingeengt. Hinweise und Ideen:Der beschreibende Vergleich der Diagramme des intakten und geminderten Gehörs ist als von den Schülern selbstständig zu lösende (Haus-) Aufgabe gut geeignet. Neben der praktischen Übung des schriftlichen Ausdrucks (Deutsch) kommen hier auch Grundfertigkeiten aus der Mathematik und Physik (Wie lese ich ein Diagramm) zum Tragen. Unterrichtsbezug:Hörschädigung/SchwerhörigkeitFunktionsweise des HörensSchall/Akustik

Bild

Siemens Stiftung

Hörbahn - am Hören beteiligte Hirnregionen

Grafik, beschriftet: Die “Hörbahn” beschreibt den Weg der Hörnervenimpulse in und durch das Hirn. Damit ist allerdings der Hörvorgang noch nicht abgeschlossen.Die Hörbahn ist die Nervenbahn für die Hörempfindung.Früher dachte man, dass die Sinne stärker lokalisiert wären. Heute weiß man, dass außer der Hörbahn noch viele Teile des Hirnes beteiligt sind, die auch von anderen Sinnen gemeinsam genutzt werden. Nur so sind über die bloße Mustererkennung hinaus die abstrakten Verstandesleistungen der menschlichen Intelligenz möglich. Einen komplexen Satz zu einem komplexen Sachverhalt verstehen, heißt schließlich mehr als die Summe der Wörter zu erkennen.Hinweise und Ideen:Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Aufnahme und Verarbeitung von InformationenWahrnehmen, Erkennen, Handeln

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Schall Sprache

Sprachen

Deutsch