Suchergebnis für: ** Zeige Treffer 1 - 10 von 16

Website

Medienwerkstatt Mühlacker

Wissenskarten: Brasilien

Die Wissenskarten der Medienwerkstatt Mühlacker beinhalten Informatives über Brasilien.

Arbeitsblatt, Audio, Bild, Unterrichtsplanung, Video, Website

Deutsches Polen-Institut

Landeskunde Warschau/Warszawa: Eine Stadt mit vielen Gesichtern

Das folgende Modul soll den SchülerInnen ein facettenreiches Bild Warschaus zeigen, das jenseits der Businesswolkenkratzer und glatten Hotels existiert, die man als erstes am Hauptbahnhof sieht, und es soll Spuren des verlorengegangenen Warschaus zum Vorschein bringen, die der Stadt trotz aller Zerstörung wie einem Palimpsest eingeschrieben sind. Nicht zuletzt kommen BewohnerInnen zu Wort, die sonst nicht wahrgenommen werden. Natürlich hat die deutsch-polnische Geschichte, die sich auch in Warschau - häufig schmerzhaft - zeigt, hier ihren Ort.

Arbeitsblatt, Audio, Bild, Unterrichtsplanung, Video, Website

Deutsches Polen-Institut

Landeskunde Posen: "Poznań - Stadt mit polnischer und deutscher Tradition"

Das folgende Modul soll den SchülerInnen einen Einblick in besonders wichtige Etappen der Geschichte der Stadt vermitteln. Schwerpunkte liegen auf der Rolle der Stadt bei der Entstehung des polnischen Staates und auf den polnisch-preußischen bzw. polnisch-deutschen Beziehungen. Dabei wird auch der Frage nachgegangen, welche Methoden in Zeiten der Fremdherrschaft zur Erhaltung der Identität entwickelt wurden. Ein weiteres Thema ist das Leben der Juden in Posen.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 3 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 5 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Text

Prof. Dr. Jürgen Roth

DynaGeo: Venn-Diagramme

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 2 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung