Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten, Beispiel 3 | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten, Beispiel 2 | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten, Beispiel 1 | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01

Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. Sprungstelle), an welcher der Nenner Null wird (dort ist also ein Unstetigkeitsstelle). Wurzel-Funktionen beginnen normalerweise in einem bestimmten Punkt des Koordinatensystems. Man berechnet diesen Punkt meist, indem man den Term UNTER der Wurzel Null setzt. Dieser Punkt ist (was Stetigkeit und Differenzierbarkeit betrifft) problematisch. Logarithmus-Funktionen haben ebenfalls “Problemzonen”, und zwar überall da, wo das Argument des Logarithmus [=das Innere der Klammer] Null oder negativ ist. Die Unstetigkeitsstelle ist bei der Nullstelle des Arguments.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: ganzrationale Funktion | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung