Video

Havonix Schulmedien-Verlag

Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 5 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 6 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 2 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 1 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 3 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Waagrechte Asymptote und schiefe Asymptote berechnen | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 1 | A.43.06

Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass man die größten Hochzahlen von Zähler und Nenner vergleicht und dabei vier Fälle unterscheidet. Schiefe Asymptoten betrachten wir im nächsten Unterkapitel.


Dieses Material ist Teil einer Sammlung