Video

Havonix Schulmedien-Verlag

Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt

Potenzregeln, Wurzeln, Ausklammern, binomische Formel, … wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.


Dieses Material ist Teil einer Sammlung

Video

Mathe Seite

Basisumformungen - Grundlagenrechnen

Potenzregeln, Wurzeln, Ausklammern, binomische Formel, … wer kann das alles noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier sämtliche Grundlagen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern: so klammert man einen Term richtig aus, Beispiel 3 | B.01.03

Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben “ausklammern”. Z.B. aus “ax²+bx” kann man “x” ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art “Rückwärts-Ausmultiplizieren”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern: so klammert man einen Term richtig aus | B.01.03

Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben “ausklammern”. Z.B. aus “ax²+bx” kann man “x” ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art “Rückwärts-Ausmultiplizieren”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Binomische Formeln und Binome ausrechnen, Beispiel 1 | B.01.02

Ein Binom ist eine Klammer mit zwei Termen innen drin, z.B. “(x+2)”. Für drei Sonderfälle gibt es die sogenannten binomischen Formeln. Sie lauten: 1. (a+b)²=a²+2ab+b², 2. (a-b)²=a²-2ab+b², 3. (a+b)(a-b)=a²-b². (Falls man die binomische Formeln vergisst, kann man beide Klammern auch einfach miteinander multiplizieren).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Binomische Formeln und Binome ausrechnen, Beispiel 4 - B.01.02

Ein Binom ist eine Klammer mit zwei Termen innen drin, z.B. "(x+2)". Für drei Sonderfälle gibt es die sogenannten binomischen Formeln. Sie lauten: 1. (a+b)²=a²+2ab+b², 2. (a-b)²=a²-2ab+b², 3. (a+b)(a-b)=a²-b². (Falls man die binomische Formeln vergisst, kann man beide Klammern auch einfach miteinander multiplizieren).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Terme multiplizieren bzw. ausmultiplizieren, Beispiel 3 - B.01.01

Wenn man zwei Terme miteinander multipliziert, so muss man einfach jeden Term der einen Klammer mit jedem Term der anderen Klammer multiplizieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Terme multiplizieren bzw. ausmultiplizieren, Beispiel 1 - B.01.01

Wenn man zwei Terme miteinander multipliziert, so muss man einfach jeden Term der einen Klammer mit jedem Term der anderen Klammer multiplizieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern: so klammert man einen Term richtig aus, Beispiel 1 - B.01.03

Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben "ausklammern". Z.B. aus "ax²+bx" kann man "x" ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art "Rückwärts-Ausmultiplizieren".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Binomische Formeln und Binome ausrechnen, Beispiel 2 - B.01.02

Ein Binom ist eine Klammer mit zwei Termen innen drin, z.B. "(x+2)". Für drei Sonderfälle gibt es die sogenannten binomischen Formeln. Sie lauten: 1. (a+b)²=a²+2ab+b², 2. (a-b)²=a²-2ab+b², 3. (a+b)(a-b)=a²-b². (Falls man die binomische Formeln vergisst, kann man beide Klammern auch einfach miteinander multiplizieren).


Dieses Material ist Teil einer Sammlung