Suchergebnis für: ** Zeige Treffer 1 - 10 von 597

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 1 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 3 - A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach "per Hingucken" löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a - b) der Punkt ist, den man spiegeln möchte und S(u - v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem "Ergebnispunkt") T(x - y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 4 | A.32.02

Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an der tatsächlichen Nullstelle liegt. Dieses Ergebnis setzt man abermals in die Formel ein und erhält einen noch besseren x-Wert. Das Ganze kann man beliebig oft wiederholen und erhält x-Werte die immer näher bei der tatsächlichen Nullstelle liegen. So ein Verfahren nennt man Iteration. Zwar hat das Newtonverfahren auch ein paar Macken, im Großen und Ganzen ist es jedoch wahrscheinlich das beste und schnellste Verfahren, um Gleichungen zu lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 1 | A.32.04

Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die errechnete Näherung recht gut ist oder ob sie ziemlich schlecht ist. Es gibt andere Verfahren, die bessere Ergebnisse für eine Flächenannäherung liefert, diese sind meist jedoch etwas komplizierter.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 3 | A.32.04

Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die errechnete Näherung recht gut ist oder ob sie ziemlich schlecht ist. Es gibt andere Verfahren, die bessere Ergebnisse für eine Flächenannäherung liefert, diese sind meist jedoch etwas komplizierter.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen, Beispiel 5 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 3 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum berechnen, Beispiel 3 | A.30.05

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Hierbei handelt es sich um den Wert, um welchen der Bestand überhaupt noch zunehmen kann, also um die Differenz zwischen Grenze und aktuellem Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 3 | A.30.06

Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung