Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten, Beispiel 1 | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Wurzelfunktionen, Beispiel 2 | A.45.02

Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02

Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Wurzelfunktionen | A.45.02

Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 2 | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: kurze Einführung | A.45

Unter einer Wurzel darf nie etwas Negatives stehen. Bei Wurzelfunktionen muss man daher auch eine Definitionsmenge beachten. Der Term unter der Wurzel muss größer oder gleich Null sein. Das Schaubild einer Wurzel-Funktion erkennt man typischerweise daran, dass das Schaubild in einem ganz bestimmten Punkt beginnt und oft einer halben, liegenden Parabel ähnelt.


Dieses Material ist Teil einer Sammlung