Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3e | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3f | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Übungen / Abituraufgabe 3 | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3b | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Abituraufgabe 3a | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Abituraufgabe 3c | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3d | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So kann man einen schwierigen Logarithmus berechnen, Beispiel 4 - B.06.04

Für besonders hässliche Logarithmenaufgaben braucht man Logarithmenregeln, Potenzregeln, binomische Formeln, ein dreihöckriges Kamel und sonst noch ein paar Tricks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So kann man einen schwierigen Logarithmus berechnen, Beispiel 2 - B.06.04

Für besonders hässliche Logarithmenaufgaben braucht man Logarithmenregeln, Potenzregeln, binomische Formeln, ein dreihöckriges Kamel und sonst noch ein paar Tricks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 4 - B.06.03

Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)-log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.


Dieses Material ist Teil einer Sammlung