Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Grundlagen der Konstruktion

Die Grundlagen der Konstruktion erläutert Mathelehrer Basti Wohlrab an einem ungewöhnlichen Ort: Im Wald. Für eine Schatzsuche müssen die beiden Schüler eine Mittelsenkrechte zwischen zwei Bäumen konstruieren und später den Mittelpunkt zwischen 3 Bäumen bestimmen, als den Mittelpunk in einem Dreieck.

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Grundlagen der Konstruktion - GRIPS Mathe Lektion 28

Die Grundlagen der Konstruktion erläutert Mathelehrer Basti Wohlrab an einem ungewöhnlichen Ort: Im Wald. Für eine Schatzsuche müssen die beiden Schüler eine Mittelsenkrechte zwischen zwei Bäumen konstruieren und später den Mittelpunkt zwischen 3 Bäumen bestimmen.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 4 Texten.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Schatzinsel

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Schnittpunkt Gerade-Kugel berechnen, Beispiel 3 | V.06.08

Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es so: Man löst in der Geraden nach x2 auf [bzw. nach y] und dieses in die Kreisgleichung ein. Nun löst man die Klammern auf und kommt auf eine quadratische Gleichung, die man mit der p-q-Formel oder a-b-c-Formel löst. Je nachdem, ob diese keine, eine oder zwei Lösungen liefert, hat man keinen, einen oder zwei Schnittpunkte.


Dieses Material ist Teil einer Sammlung